Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 2/2021

01.06.2021 | Original Paper

Limit State and Creep Behaviour of High-Density Polyethylene Geocell

verfasst von: An Deng, Zhihao Huangfu

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A geocell, if fabricated from high-density polyethylene (HDPE), likely suffers from excessive deformation. The level of deformation is dependent on the load applied to the geocell and sections of the geocell the load acts on. Displacement-controlled tests were applied to sole sections of geocell, namely the cell wall, edge, and junctions. The tests consisted of wall elongating, edge tearing, and junction debonding. The tests were cell section-orientated, thus enabling identifying the most vulnerable part of the cellular system. The tests results comprised the tensile strength and creep behaviour of cell specimens. It was found that displacement rates affected the tensile strength and post-peak elongation at a level specific to the cell sections tested. The tensile strength of all sections of the geocell decreased with the displacement rate. The load magnitude affected the creep behaviour of the material and changed the time interval between the start of loading to a rupture. The creep behaviour was modelled numerically. Numerical simulations showed that stress concentration occurred at certain points on the geocell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siabil SMAG, Tafreshi SNM, Dawson AR (2020) Response of pavement foundations incorporating both geocells and expanded polystyrene (EPS) geofoam. Geotext Geomembranes 48(1):1–23CrossRef Siabil SMAG, Tafreshi SNM, Dawson AR (2020) Response of pavement foundations incorporating both geocells and expanded polystyrene (EPS) geofoam. Geotext Geomembranes 48(1):1–23CrossRef
2.
Zurück zum Zitat Venkateswarlu H, Ujjawal KN, Hegde A (2018) Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells. Geotext Geomembranes 46(6):882–896CrossRef Venkateswarlu H, Ujjawal KN, Hegde A (2018) Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells. Geotext Geomembranes 46(6):882–896CrossRef
3.
Zurück zum Zitat Biswas A, Krishna AM (2017) Geocell-reinforced foundation systems: a critical review. Int J Geosynth Gr Eng. 3:2CrossRef Biswas A, Krishna AM (2017) Geocell-reinforced foundation systems: a critical review. Int J Geosynth Gr Eng. 3:2CrossRef
4.
Zurück zum Zitat Song F, Liu H, Ma L, Hu H (2018) Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext Geomembranes 46(3):284–296CrossRef Song F, Liu H, Ma L, Hu H (2018) Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext Geomembranes 46(3):284–296CrossRef
5.
Zurück zum Zitat Tafreshi SNM, Darabi NJ, Dawson AR (2020) Combining EPS geofoam with geocell to reduce buried pipe loads and trench surface rutting. Geotext Geomembranes 48(3):400–418CrossRef Tafreshi SNM, Darabi NJ, Dawson AR (2020) Combining EPS geofoam with geocell to reduce buried pipe loads and trench surface rutting. Geotext Geomembranes 48(3):400–418CrossRef
6.
Zurück zum Zitat Liu Y, Deng A, Jaksa M (2018) Three-dimensional modeling of geocell-reinforced straight and curved ballast embankments. Comput Geotech 102:53–65CrossRef Liu Y, Deng A, Jaksa M (2018) Three-dimensional modeling of geocell-reinforced straight and curved ballast embankments. Comput Geotech 102:53–65CrossRef
7.
Zurück zum Zitat Liu Y, Deng A, Jaksa M (2020) Three-dimensional discrete-element modeling of geocell-reinforced ballast considering breakage. Int J Geomech 20(4):04020032CrossRef Liu Y, Deng A, Jaksa M (2020) Three-dimensional discrete-element modeling of geocell-reinforced ballast considering breakage. Int J Geomech 20(4):04020032CrossRef
8.
Zurück zum Zitat Tafreshi SNM, Rahimi M, Dawson AR, Leshchinsky B (2019) Cyclic and post-cycling anchor response in geocell-reinforced sand. Can Geotech J 56(11):1700–1718CrossRef Tafreshi SNM, Rahimi M, Dawson AR, Leshchinsky B (2019) Cyclic and post-cycling anchor response in geocell-reinforced sand. Can Geotech J 56(11):1700–1718CrossRef
9.
Zurück zum Zitat Hyeong-Joo K, Myoung-Soo W et al (2015) Finite-element analysis on the stability of geotextile tube-reinforced embankments under scouring. Int J Geomech. 15(2):6014019CrossRef Hyeong-Joo K, Myoung-Soo W et al (2015) Finite-element analysis on the stability of geotextile tube-reinforced embankments under scouring. Int J Geomech. 15(2):6014019CrossRef
10.
Zurück zum Zitat Venkateswarlu H, Hegde A (2020) Effect of influencing parameters on the vibration isolation efficacy of geocell reinforced soil beds. Int J Geosynth Gr Eng. 6:2CrossRef Venkateswarlu H, Hegde A (2020) Effect of influencing parameters on the vibration isolation efficacy of geocell reinforced soil beds. Int J Geosynth Gr Eng. 6:2CrossRef
11.
Zurück zum Zitat Pokharel SK, Han J, Leshchinsky D, Parsons RL (2018) Experimental evaluation of geocell-reinforced bases under repeated loading. Int J Pavement Res Technol 11(2):114–127CrossRef Pokharel SK, Han J, Leshchinsky D, Parsons RL (2018) Experimental evaluation of geocell-reinforced bases under repeated loading. Int J Pavement Res Technol 11(2):114–127CrossRef
12.
Zurück zum Zitat Kolathayar S, Sowmya S, Priyanka E (2020) Comparative study for performance of soil bed reinforced with jute and sisal geocells as alternatives to HDPE Geocells. Int J Geosynth Gr Eng. 6:4CrossRef Kolathayar S, Sowmya S, Priyanka E (2020) Comparative study for performance of soil bed reinforced with jute and sisal geocells as alternatives to HDPE Geocells. Int J Geosynth Gr Eng. 6:4CrossRef
13.
Zurück zum Zitat Edil TB, Benson CH, Bin-Shafique M, Tanyu BF, Kim W-H, Senol A (2002) Field evaluation of construction alternatives for roadways over soft subgrade. Transp Res Rec 1786(1):36–48CrossRef Edil TB, Benson CH, Bin-Shafique M, Tanyu BF, Kim W-H, Senol A (2002) Field evaluation of construction alternatives for roadways over soft subgrade. Transp Res Rec 1786(1):36–48CrossRef
14.
Zurück zum Zitat Dash SK (2012) Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. Int J Geomech 12(5):537–548CrossRef Dash SK (2012) Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. Int J Geomech 12(5):537–548CrossRef
15.
Zurück zum Zitat Ferreira FB, Vieira CS, Lopes ML, Ferreira PG (2020) HDPE geogrid-residual soil interaction under monotonic and cyclic pullout loading. Geosynth Int 27(1):79–96CrossRef Ferreira FB, Vieira CS, Lopes ML, Ferreira PG (2020) HDPE geogrid-residual soil interaction under monotonic and cyclic pullout loading. Geosynth Int 27(1):79–96CrossRef
16.
Zurück zum Zitat Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610CrossRef Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610CrossRef
17.
Zurück zum Zitat Thakur JK, Han J, Parsons RL (2013) Creep behavior of geocell-reinforced recycled asphalt pavement bases. J Mater Civ Eng 25(10):1533–1542CrossRef Thakur JK, Han J, Parsons RL (2013) Creep behavior of geocell-reinforced recycled asphalt pavement bases. J Mater Civ Eng 25(10):1533–1542CrossRef
18.
Zurück zum Zitat Liu Y, Deng A, Jaksa M (2019) Failure mechanisms of geocell walls and junctions. Geotext Geomembranes 47(2):104–120CrossRef Liu Y, Deng A, Jaksa M (2019) Failure mechanisms of geocell walls and junctions. Geotext Geomembranes 47(2):104–120CrossRef
19.
Zurück zum Zitat Eldesouky HMG, Brachman RWI (2020) Viscoplastic modelling of HDPE geomembrane local stresses and strains. Geotext Geomembranes 48(1):41–51CrossRef Eldesouky HMG, Brachman RWI (2020) Viscoplastic modelling of HDPE geomembrane local stresses and strains. Geotext Geomembranes 48(1):41–51CrossRef
20.
Zurück zum Zitat Merry SM, Bray JD (1997) Time-dependent mechanical response of HDPE geomembranes. J Geotech Eng 123(1):57–65CrossRef Merry SM, Bray JD (1997) Time-dependent mechanical response of HDPE geomembranes. J Geotech Eng 123(1):57–65CrossRef
21.
Zurück zum Zitat Cardile G, Moraci N, Pisano M (2017) Tensile behaviour of an HDPE geogrid under cyclic loading: experimental results and empirical modelling. Geosynth Int 24(1):95–112CrossRef Cardile G, Moraci N, Pisano M (2017) Tensile behaviour of an HDPE geogrid under cyclic loading: experimental results and empirical modelling. Geosynth Int 24(1):95–112CrossRef
22.
Zurück zum Zitat Shinoda M, Bathurst RJ (2004) Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load. Geotext Geomembranes 22(4):205–222CrossRef Shinoda M, Bathurst RJ (2004) Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load. Geotext Geomembranes 22(4):205–222CrossRef
23.
Zurück zum Zitat Yeo SS, Hsuan YG (2007) The short- and long-term compressive behavior of high-density polyethylene geonet and geocomposite under inclined conditions. Geosynth Int 14(3):154–164CrossRef Yeo SS, Hsuan YG (2007) The short- and long-term compressive behavior of high-density polyethylene geonet and geocomposite under inclined conditions. Geosynth Int 14(3):154–164CrossRef
24.
Zurück zum Zitat Zhang C, Moore ID (1997) Nonlinear mechanical response of high density polyethylene. Part I: Experimental investigation and model evaluation. Polym Eng Sci. 37(2):404–13CrossRef Zhang C, Moore ID (1997) Nonlinear mechanical response of high density polyethylene. Part I: Experimental investigation and model evaluation. Polym Eng Sci. 37(2):404–13CrossRef
25.
Zurück zum Zitat Wesseloo J, Visser AT, Rust E (2004) A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes. Geotext Geomembranes 22(4):273–295CrossRef Wesseloo J, Visser AT, Rust E (2004) A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes. Geotext Geomembranes 22(4):273–295CrossRef
26.
Zurück zum Zitat ASTM D4533 / D4533M-15 Standard Test Method for Trapezoid Tearing Strength of Geotextiles. In ASTM International West Conshohocken, PA, USA. ASTM D4533 / D4533M-15 Standard Test Method for Trapezoid Tearing Strength of Geotextiles. In ASTM International West Conshohocken, PA, USA.
27.
Zurück zum Zitat ASTM D638–14 Standard Test Method for Tensile Properties of Plastics, ASTM International. In ASTM International West Conshohocken, PA, USA. ASTM D638–14 Standard Test Method for Tensile Properties of Plastics, ASTM International. In ASTM International West Conshohocken, PA, USA.
28.
Zurück zum Zitat de França FAN, de Bueno B, S, (2011) Creep behavior of geosynthetics using confined-accelerated tests. Geosynth Int 18(5):242–254CrossRef de França FAN, de Bueno B, S, (2011) Creep behavior of geosynthetics using confined-accelerated tests. Geosynth Int 18(5):242–254CrossRef
29.
Zurück zum Zitat Xu M, Hallinan B, Wille K (2016) Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cem Concr Compos 70:98–109CrossRef Xu M, Hallinan B, Wille K (2016) Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cem Concr Compos 70:98–109CrossRef
30.
Zurück zum Zitat Kim DJ, El-Tawil S, Naaman AE (2008) Loading rate effect on pullout behavior of deformed steel fibers. ACI Mater J 105(6):576 Kim DJ, El-Tawil S, Naaman AE (2008) Loading rate effect on pullout behavior of deformed steel fibers. ACI Mater J 105(6):576
31.
Zurück zum Zitat Isik A, Gurbuz A (2020) Pullout behavior of geocell reinforcement in cohesionless soils. Geotext Geomembranes 48(1):71–81CrossRef Isik A, Gurbuz A (2020) Pullout behavior of geocell reinforcement in cohesionless soils. Geotext Geomembranes 48(1):71–81CrossRef
32.
Zurück zum Zitat Liu H (2007) Material Modelling for Structural analysis of Polyethylene. University of Waterloo. Liu H (2007) Material Modelling for Structural analysis of Polyethylene. University of Waterloo.
33.
Zurück zum Zitat Findley WN (1960) Mechanism and mechanics of creep of plastics, vol 16. SPE Journal, Providence Findley WN (1960) Mechanism and mechanics of creep of plastics, vol 16. SPE Journal, Providence
34.
Zurück zum Zitat Sing A, Mitchell J (1968) 55. General stress-strain-time function for soils. J Terramechanics. 5(2):78 Sing A, Mitchell J (1968) 55. General stress-strain-time function for soils. J Terramechanics. 5(2):78
35.
Zurück zum Zitat Spathis G, Katsourinis S, Kontou E (2017) Evaluation of fundamental viscoelastic functions by a nonlinear viscoelastic model. Polym Eng Sci 57(12):1389–1395CrossRef Spathis G, Katsourinis S, Kontou E (2017) Evaluation of fundamental viscoelastic functions by a nonlinear viscoelastic model. Polym Eng Sci 57(12):1389–1395CrossRef
36.
Zurück zum Zitat Zhang C, Moore ID (1997) Finite element modelling of inelastic deformation of ductile polymers. Geosynth Int 4(2):137–163CrossRef Zhang C, Moore ID (1997) Finite element modelling of inelastic deformation of ductile polymers. Geosynth Int 4(2):137–163CrossRef
37.
Zurück zum Zitat Kühl A, Muñoz-Rojas PA, Barbieri R, Benvenutti IJ (2017) A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym Eng Sci 57(2):144–152CrossRef Kühl A, Muñoz-Rojas PA, Barbieri R, Benvenutti IJ (2017) A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym Eng Sci 57(2):144–152CrossRef
38.
Zurück zum Zitat Bailey RW Creep of steel under simple and compund stresses, and the use of high initial temperature in steam power plants. In: Transactions of the World Power Conference. page 1089. Bailey RW Creep of steel under simple and compund stresses, and the use of high initial temperature in steam power plants. In: Transactions of the World Power Conference. page 1089.
39.
Zurück zum Zitat Norton FH (1929) The creep of steel at high temperatures. Library (Lond). Norton FH (1929) The creep of steel at high temperatures. Library (Lond).
Metadaten
Titel
Limit State and Creep Behaviour of High-Density Polyethylene Geocell
verfasst von
An Deng
Zhihao Huangfu
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 2/2021
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-021-00269-8

Weitere Artikel der Ausgabe 2/2021

International Journal of Geosynthetics and Ground Engineering 2/2021 Zur Ausgabe