Skip to main content
Erschienen in: Rheologica Acta 2/2012

01.02.2012 | Original Contribution

Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites

verfasst von: Hojjat Mahi, Denis Rodrigue

Erschienen in: Rheologica Acta | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports on the melt rheological properties of ethylene vinyl acetate containing between 0 and 10 wt.% of nano-crystalline cellulose (NCC). A complete set of rheological tests including frequency sweeps, shear transients, and uniaxial elongations was performed. Frequency sweeps showed that at low frequencies, a pseudo solid-like behavior was obtained for NCC concentrations higher than 5%. This behavior was related to hydrogen bonding between NCC particles and the creation of particle networks as the result of particle–particle interactions. For transient shear tests, all compositions presented a stress overshoot at high shear rates before reaching a steady state. It was found that the amplitude of this overshoot depends on both NCC content and shear rate. On the other hand, the time to reach the maximum was found to be highly shear rate dependent but concentration dependence was rather weak. For uniaxial extensional flow, higher extensional viscosity was observed with increasing NCC content. On the other hand, strain hardening was found to decrease with increasing NCC content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2006) Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J Non-Newton Fluid Mech 134(1–3):105–126CrossRef Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2006) Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J Non-Newton Fluid Mech 134(1–3):105–126CrossRef
Zurück zum Zitat Akcora P, Kumar SK, Sakai VG, Li U, Benicewicz BC, Schadler LS (2010a) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43(19):8275–8281CrossRef Akcora P, Kumar SK, Sakai VG, Li U, Benicewicz BC, Schadler LS (2010a) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43(19):8275–8281CrossRef
Zurück zum Zitat Akcora P, Kumar SK , Lewis S, Schadler LS, Li U, Benicewicz BC, Sandy A, Douglas JF, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH (2010b) Gel-like mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43(2):1003–1010CrossRef Akcora P, Kumar SK , Lewis S, Schadler LS, Li U, Benicewicz BC, Sandy A, Douglas JF, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH (2010b) Gel-like mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43(2):1003–1010CrossRef
Zurück zum Zitat Azizi MAS, Alloin F, Sanchez JY, Dufresne A (2004a) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157CrossRef Azizi MAS, Alloin F, Sanchez JY, Dufresne A (2004a) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157CrossRef
Zurück zum Zitat Azizi MAS, Alloin F, Sanchez JY, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393CrossRef Azizi MAS, Alloin F, Sanchez JY, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393CrossRef
Zurück zum Zitat Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41(4):1289–1296CrossRef Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41(4):1289–1296CrossRef
Zurück zum Zitat Capadona JR, Van den Berg O, Capadona LA, Schroeter M, Rohan SJ, Tyler DJ, Weder C (2007) Self-assembled nanofiber templates for the preparation of well-dispersed polymer nanocomposites. Nat Nanotechnol 2(12):765–769CrossRef Capadona JR, Van den Berg O, Capadona LA, Schroeter M, Rohan SJ, Tyler DJ, Weder C (2007) Self-assembled nanofiber templates for the preparation of well-dispersed polymer nanocomposites. Nat Nanotechnol 2(12):765–769CrossRef
Zurück zum Zitat Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41(14):5333–5338CrossRef Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41(14):5333–5338CrossRef
Zurück zum Zitat Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031CrossRef Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031CrossRef
Zurück zum Zitat Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci, Part B, Polym Phys 38(3):383–392CrossRef Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci, Part B, Polym Phys 38(3):383–392CrossRef
Zurück zum Zitat Dalmas F, Cavaille J-Y, Gauthier C, Chazeau L, Dendievel RM (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites: influence of processing conditions. Compos Sci Technol 67(5):829–839CrossRef Dalmas F, Cavaille J-Y, Gauthier C, Chazeau L, Dendievel RM (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites: influence of processing conditions. Compos Sci Technol 67(5):829–839CrossRef
Zurück zum Zitat Dealy JM (2010) Weissenberg and Deborah numbers—their definition and uses. Rheol Bull 79(2):14–18 Dealy JM (2010) Weissenberg and Deborah numbers—their definition and uses. Rheol Bull 79(2):14–18
Zurück zum Zitat Dealy JM, Tsang Wm-KW (1981) Structural time dependency in the rheological behavior of molten polymers. J Appl Polym Sci 26(4):1149–1158CrossRef Dealy JM, Tsang Wm-KW (1981) Structural time dependency in the rheological behavior of molten polymers. J Appl Polym Sci 26(4):1149–1158CrossRef
Zurück zum Zitat Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing—theory and applications. Van Nostrand Reinhold, New York, pp 237–239CrossRef Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing—theory and applications. Van Nostrand Reinhold, New York, pp 237–239CrossRef
Zurück zum Zitat Doi M, Edwards SF (1986) Molecular theory for the viscoelasticity of polymeric liquids. In: The theory of polymer dynamics. Clarendon Press, London, pp 218–288 Doi M, Edwards SF (1986) Molecular theory for the viscoelasticity of polymeric liquids. In: The theory of polymer dynamics. Clarendon Press, London, pp 218–288
Zurück zum Zitat Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef
Zurück zum Zitat Dutta NK, Choudhury NR, Haidar B, Vidal A, Donnet JB, Delmotte L, Chezeau JM (1994) High resolution solid-state NMR investigation of the filler–rubber interaction: 1. High speed H magic-angle spinning NMR spectroscopy in carbon black filled styrene-butadiene rubber. Polymer 35(20):4293–4299CrossRef Dutta NK, Choudhury NR, Haidar B, Vidal A, Donnet JB, Delmotte L, Chezeau JM (1994) High resolution solid-state NMR investigation of the filler–rubber interaction: 1. High speed H magic-angle spinning NMR spectroscopy in carbon black filled styrene-butadiene rubber. Polymer 35(20):4293–4299CrossRef
Zurück zum Zitat Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367CrossRef
Zurück zum Zitat Favier V, Canova GR, Shrivastavas C, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef Favier V, Canova GR, Shrivastavas C, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef
Zurück zum Zitat Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newton Fluid Mech 11(1–2):69–109CrossRef Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newton Fluid Mech 11(1–2):69–109CrossRef
Zurück zum Zitat Goel V, Chatterjee T, Bombalski L, Yurekli K, Matyjaszewski K, Krishnamoorti R (2006) Viscoelastic properties of silica-grafted poly(styrene–acrylonitrile) nanocomposites. J Appl Polym Sci, Part B, Polym Phys 44(14):2014–2023CrossRef Goel V, Chatterjee T, Bombalski L, Yurekli K, Matyjaszewski K, Krishnamoorti R (2006) Viscoelastic properties of silica-grafted poly(styrene–acrylonitrile) nanocomposites. J Appl Polym Sci, Part B, Polym Phys 44(14):2014–2023CrossRef
Zurück zum Zitat Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15(2):297–301CrossRef Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15(2):297–301CrossRef
Zurück zum Zitat Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30CrossRef
Zurück zum Zitat Gupta RK, Pasanovic-Zujo V, Bhattacharya SN (2005) Shear and extensional rheology of EVA/layered silicate-nanocomposites. J Non-Newton Fluid Mech 128(2–3):116–125CrossRef Gupta RK, Pasanovic-Zujo V, Bhattacharya SN (2005) Shear and extensional rheology of EVA/layered silicate-nanocomposites. J Non-Newton Fluid Mech 128(2–3):116–125CrossRef
Zurück zum Zitat Habibi Y, Dufresne A (2009) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9(7):1974–1980CrossRef Habibi Y, Dufresne A (2009) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9(7):1974–1980CrossRef
Zurück zum Zitat Habibi Y, Goffin AL, Schiltz N, Duquesne E, Duboisand P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 41(18):5002–5010CrossRef Habibi Y, Goffin AL, Schiltz N, Duquesne E, Duboisand P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 41(18):5002–5010CrossRef
Zurück zum Zitat Habibi Y, Lucia AL, Orlando JR (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia AL, Orlando JR (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
Zurück zum Zitat Handge UA, Pötschke P (2007) Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46(6):889–898CrossRef Handge UA, Pötschke P (2007) Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46(6):889–898CrossRef
Zurück zum Zitat Hornsby PR (1999) Rheology, compounding and processing of filled thermoplastics. Adv Polym Sci 139:155–217CrossRef Hornsby PR (1999) Rheology, compounding and processing of filled thermoplastics. Adv Polym Sci 139:155–217CrossRef
Zurück zum Zitat Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev, B Condens Matter 73:1254221–1254229 Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev, B Condens Matter 73:1254221–1254229
Zurück zum Zitat Inoue T, Yamashita Y, Osaki K (2002a) Viscoelasticity of an entangled polymer solution with special attention on a characteristic time for nonlinear behavior. Macromolecules 35(5):1770–1775CrossRef Inoue T, Yamashita Y, Osaki K (2002a) Viscoelasticity of an entangled polymer solution with special attention on a characteristic time for nonlinear behavior. Macromolecules 35(5):1770–1775CrossRef
Zurück zum Zitat Inoue T, Uematsu T, Yamashita Y, Osaki K (2002b) Significance of the longest Rouse relaxation time in the stress relaxation process at large deformation of entangled polymer solutions. Macromolecules 35(12):4718–4724CrossRef Inoue T, Uematsu T, Yamashita Y, Osaki K (2002b) Significance of the longest Rouse relaxation time in the stress relaxation process at large deformation of entangled polymer solutions. Macromolecules 35(12):4718–4724CrossRef
Zurück zum Zitat Kagarise C, Xua J, Wang Y, Mahboob M, Koelling KW, Bechtel SE (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non-Newton Fluid Mech 165(3–4):98–109CrossRef Kagarise C, Xua J, Wang Y, Mahboob M, Koelling KW, Bechtel SE (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non-Newton Fluid Mech 165(3–4):98–109CrossRef
Zurück zum Zitat Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327CrossRef Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327CrossRef
Zurück zum Zitat Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(160):13450–13456CrossRef Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(160):13450–13456CrossRef
Zurück zum Zitat Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141(2–3):167–179CrossRef Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141(2–3):167–179CrossRef
Zurück zum Zitat Liu H, Liu H, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose. Bioresour Technol 101(14): 5685–5692CrossRef Liu H, Liu H, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose. Bioresour Technol 101(14): 5685–5692CrossRef
Zurück zum Zitat Ljungberg N, Bonini C, Bortlussi F, Boisson C, Heuex L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef Ljungberg N, Bonini C, Bortlussi F, Boisson C, Heuex L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef
Zurück zum Zitat Marcovich NE, Auad ML, Bellesi NE, Nutt S, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21(4):870–881CrossRef Marcovich NE, Auad ML, Bellesi NE, Nutt S, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21(4):870–881CrossRef
Zurück zum Zitat Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties, ACS Symposium Series 938, American Chemical Society, Washington, DC, pp 114–131 Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties, ACS Symposium Series 938, American Chemical Society, Washington, DC, pp 114–131
Zurück zum Zitat McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110CrossRef McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110CrossRef
Zurück zum Zitat Menezes JD, Siqueira A, Curvelo G, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers. Polymer 50(19):4552–4563CrossRef Menezes JD, Siqueira A, Curvelo G, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers. Polymer 50(19):4552–4563CrossRef
Zurück zum Zitat Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 41(21):8252–8266CrossRef Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 41(21):8252–8266CrossRef
Zurück zum Zitat Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199CrossRef Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199CrossRef
Zurück zum Zitat Muenstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRef Muenstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRef
Zurück zum Zitat Nagase Y, Okada K (1986) Heterogeneous behavior after yielding of solid suspensions. J Rheol 30(6):1123–1143CrossRef Nagase Y, Okada K (1986) Heterogeneous behavior after yielding of solid suspensions. J Rheol 30(6):1123–1143CrossRef
Zurück zum Zitat Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef
Zurück zum Zitat Osaki K, Inoue T, Uematsu T, Yamashita Y (2001) Evaluation methods of the longest relaxation time of an entangled polymer in semidilute solution. J Polym Sci, Part B, Polym Phys 39(14):1704–1712CrossRef Osaki K, Inoue T, Uematsu T, Yamashita Y (2001) Evaluation methods of the longest relaxation time of an entangled polymer in semidilute solution. J Polym Sci, Part B, Polym Phys 39(14):1704–1712CrossRef
Zurück zum Zitat Palermo E, Si M, Occhiogrosso R, Berndt C, Rudomen G, Rafailovich M (2001) Effects of supercritical carbon dioxide on phase homogeneity, morphology, and mechanical properties of poly(styrene-blend-ethylene-stat-vinyl acetate). Macromolecules 38(22):9180–9186CrossRef Palermo E, Si M, Occhiogrosso R, Berndt C, Rudomen G, Rafailovich M (2001) Effects of supercritical carbon dioxide on phase homogeneity, morphology, and mechanical properties of poly(styrene-blend-ethylene-stat-vinyl acetate). Macromolecules 38(22):9180–9186CrossRef
Zurück zum Zitat Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ (2006) Rheological behavior of polymer/layered silicate nanocomposites under uniaxial extensional flow. Macromol Res 14(3):318–323CrossRef Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ (2006) Rheological behavior of polymer/layered silicate nanocomposites under uniaxial extensional flow. Macromol Res 14(3):318–323CrossRef
Zurück zum Zitat Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRef Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRef
Zurück zum Zitat Pearson D, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Part B, Polym Phys 29(13):1589–1597CrossRef Pearson D, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Part B, Polym Phys 29(13):1589–1597CrossRef
Zurück zum Zitat Robertson CG, Roland CB (2002) Nonlinear rheology of hyperbranched polyisobutylene. J Rheol 46(1):307–320CrossRef Robertson CG, Roland CB (2002) Nonlinear rheology of hyperbranched polyisobutylene. J Rheol 46(1):307–320CrossRef
Zurück zum Zitat Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining Rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48(2):395–403CrossRef Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining Rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48(2):395–403CrossRef
Zurück zum Zitat Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888CrossRef Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888CrossRef
Zurück zum Zitat Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669CrossRef Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669CrossRef
Zurück zum Zitat Shweta AP, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1–2):248–258 Shweta AP, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1–2):248–258
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef
Zurück zum Zitat Solomon MJ, Almusallam AS, Seefeldt KF, Thanaroj AS, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872CrossRef Solomon MJ, Almusallam AS, Seefeldt KF, Thanaroj AS, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872CrossRef
Zurück zum Zitat Stratton RA, Butcher AF (1973) Stress relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. J Appl Polym Sci 11(9):1747–1758 Stratton RA, Butcher AF (1973) Stress relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. J Appl Polym Sci 11(9):1747–1758
Zurück zum Zitat Twite-Kabamba E, Rodrigue D (2008) The effect of recycling on LDPE foamability: elongational rheology. Polym Eng Sci 48(1):11–18CrossRef Twite-Kabamba E, Rodrigue D (2008) The effect of recycling on LDPE foamability: elongational rheology. Polym Eng Sci 48(1):11–18CrossRef
Zurück zum Zitat Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fibre composites. Polym Compos 30(10):1401–1407CrossRef Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fibre composites. Polym Compos 30(10):1401–1407CrossRef
Zurück zum Zitat Utracki LA, Jorgensen JL (2002) Dynamic melt flow of nanocomposites based on poly-ε-caprolactam. Rheol Acta 41(5):397–407CrossRef Utracki LA, Jorgensen JL (2002) Dynamic melt flow of nanocomposites based on poly-ε-caprolactam. Rheol Acta 41(5):397–407CrossRef
Zurück zum Zitat Utracki LA, Sepehr M, Carreau PJ (2010) Rheology of polymers with nanofillers. In: Utracki LA, Jamieson AM (eds) Polymer physics: from suspensions to nanocomposites and beyond. Wiley, Hoboken, pp 639–708CrossRef Utracki LA, Sepehr M, Carreau PJ (2010) Rheology of polymers with nanofillers. In: Utracki LA, Jamieson AM (eds) Polymer physics: from suspensions to nanocomposites and beyond. Wiley, Hoboken, pp 639–708CrossRef
Zurück zum Zitat Wang Y, Xu J, Bechtel ES, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45(6):919–941CrossRef Wang Y, Xu J, Bechtel ES, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45(6):919–941CrossRef
Zurück zum Zitat West AHL, Melrose JR, Ball RC (1994) Computer simulations of the breakup of colloid aggregates. Phys Rev 49(5):4237–4249 West AHL, Melrose JR, Ball RC (1994) Computer simulations of the breakup of colloid aggregates. Phys Rev 49(5):4237–4249
Zurück zum Zitat Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107(23):10191–10200CrossRef Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107(23):10191–10200CrossRef
Zurück zum Zitat Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–383CrossRef Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–383CrossRef
Zurück zum Zitat Wohlfarth C (2001). CRC handbook of thermodynamic data of copolymer solutions. Chapter 6 PVT data of molten copolymers. CRC, New YorkCrossRef Wohlfarth C (2001). CRC handbook of thermodynamic data of copolymer solutions. Chapter 6 PVT data of molten copolymers. CRC, New YorkCrossRef
Zurück zum Zitat Xu L, Reeder S, Thopasridharan M, Ren J, Shipp DA, Krishnamoorti R (2005) Structure and melt rheology of polystyrene-based layered silicate nanocomposites. Nanotechnology 16(7):S514–S521CrossRef Xu L, Reeder S, Thopasridharan M, Ren J, Shipp DA, Krishnamoorti R (2005) Structure and melt rheology of polystyrene-based layered silicate nanocomposites. Nanotechnology 16(7):S514–S521CrossRef
Zurück zum Zitat Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Tailored nanocomposites of polypropylene with layered silicates. Macromolecules 42(11):3795–3803CrossRef Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Tailored nanocomposites of polypropylene with layered silicates. Macromolecules 42(11):3795–3803CrossRef
Zurück zum Zitat Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46(20):8641–8660CrossRef Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46(20):8641–8660CrossRef
Metadaten
Titel
Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites
verfasst von
Hojjat Mahi
Denis Rodrigue
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 2/2012
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-011-0603-9

Weitere Artikel der Ausgabe 2/2012

Rheologica Acta 2/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.