Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

01.06.2020

Linear Wireless Sensor Networks Energy Minimization Using Optimal Placement Strategies of Nodes

verfasst von: Ahmed Hussein, Ahmed Elnakib, Sherif Kishk

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, the recent developments in the field of wireless sensor networks (WSNs) have initiated new applications of WSNs which can be used in many fields, such as military, environment, health, home and industry. One of the emerged wireless sensor networks topologies are linear wireless sensor networks (LWSNs). They have been rising as a great focus area of research. Such wireless sensor networks have a large number of applications such as border monitoring, railway track monitoring, structural health monitoring of bridges, health care and machines surveillance. LWSNs are widely applied in oil and gas pipelines infrastructure monitoring applications to enable the automatic measurement, analyses, storage and transmission of real-time data. Minimization of energy consumption of LWSNs is crucial for their proper usage. Using two different system models, this research investigates the minimization of LWSNs energy consumption using optimal node placement strategies compared to simple equal-distance placement scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Varshney, S., Kumar, C., & Swaroop, A. (2015). Linear sensor networks: Applications, issues and major research trends. In International conference on computing, communication & automation (ICCCA). Varshney, S., Kumar, C., & Swaroop, A. (2015). Linear sensor networks: Applications, issues and major research trends. In International conference on computing, communication & automation (ICCCA).
2.
Zurück zum Zitat Imran, C., Aldukhail, M., Almezeini, N., & Alnuem, M. (2016). Potential applications of linear wireless sensor networks: A survey. International Journal of Computer Networks and Communications Security, 4(6), 183–200. Imran, C., Aldukhail, M., Almezeini, N., & Alnuem, M. (2016). Potential applications of linear wireless sensor networks: A survey. International Journal of Computer Networks and Communications Security, 4(6), 183–200.
3.
Zurück zum Zitat La Rosa, R., Livreri, P., Trigona, C., Di Donato, L., & Sorbello, G. (2019). Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer. Sensors., 19, 2660.CrossRef La Rosa, R., Livreri, P., Trigona, C., Di Donato, L., & Sorbello, G. (2019). Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer. Sensors., 19, 2660.CrossRef
4.
Zurück zum Zitat Qiu, L., Salcic, Z., & Wang, K. I. (2019). Adaptive Duty Cycle MAC Protocol of Low Energy WSN for Monitoring Underground Pipelines. 2019 IEEE 17th international conference on industrial informatics (INDIN), Helsinki, Finland (pp. 41-44). Qiu, L., Salcic, Z., & Wang, K. I. (2019). Adaptive Duty Cycle MAC Protocol of Low Energy WSN for Monitoring Underground Pipelines. 2019 IEEE 17th international conference on industrial informatics (INDIN), Helsinki, Finland (pp. 41-44).
5.
Zurück zum Zitat Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless sensor networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87–97.CrossRef Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless sensor networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87–97.CrossRef
6.
Zurück zum Zitat Kara, A., Al Imran, M. A., & Karadag, K. (2019). Linear wireless sensor networks for cathodic protection monitoring of pipelines. In 2019 International conference on mechatronics, robotics and systems engineering (MoRSE), Bali, Indonesia (pp. 233–236). Kara, A., Al Imran, M. A., & Karadag, K. (2019). Linear wireless sensor networks for cathodic protection monitoring of pipelines. In 2019 International conference on mechatronics, robotics and systems engineering (MoRSE), Bali, Indonesia (pp. 233–236).
7.
Zurück zum Zitat Irannejad, M., & Iraninejad, M. (2014). Remote monitoring of oil pipelines cathodic protection system via GSM and its application to SCADA system. International Journal of Science and Research (IJSR), 3(5), 1619–1622. Irannejad, M., & Iraninejad, M. (2014). Remote monitoring of oil pipelines cathodic protection system via GSM and its application to SCADA system. International Journal of Science and Research (IJSR), 3(5), 1619–1622.
8.
Zurück zum Zitat Abate, F., Caro, D. D., Leo, G. D., Pietrosanto A., & Paciello, V. (2019). Smart meters communication using Gas pipelines as channel: feasibility study. In 2019 IEEE international instrumentation and measurement technology conference (I2MTC), Auckland, New Zealand (pp. 1-6). Abate, F., Caro, D. D., Leo, G. D., Pietrosanto A., & Paciello, V. (2019). Smart meters communication using Gas pipelines as channel: feasibility study. In 2019 IEEE international instrumentation and measurement technology conference (I2MTC), Auckland, New Zealand (pp. 1-6).
9.
Zurück zum Zitat Liu, P., Huang, Z., & Duan, S. (2015). Optimization for remote monitoring terrestrial petroleum pipeline cathode protection system using graded network. International Journal of Smart Home, 9(6), 51–64.CrossRef Liu, P., Huang, Z., & Duan, S. (2015). Optimization for remote monitoring terrestrial petroleum pipeline cathode protection system using graded network. International Journal of Smart Home, 9(6), 51–64.CrossRef
10.
Zurück zum Zitat Gundampati, K. (2019). Wireless sensor network (WSN) platform for railway condition monitoring. Master’s thesis, University of Huddersfield. Gundampati, K. (2019). Wireless sensor network (WSN) platform for railway condition monitoring. Master’s thesis, University of Huddersfield.
11.
Zurück zum Zitat Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., & Shehata, M. S. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403–1423.CrossRef Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., & Shehata, M. S. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403–1423.CrossRef
12.
Zurück zum Zitat Li, R., Ma, W., Huang, N., & Kang, R. (2017). Deployment-based lifetime optimization for linear wireless sensor networks considering both retransmission and discrete power control. PLoS ONE, 12(11), e0188519.CrossRef Li, R., Ma, W., Huang, N., & Kang, R. (2017). Deployment-based lifetime optimization for linear wireless sensor networks considering both retransmission and discrete power control. PLoS ONE, 12(11), e0188519.CrossRef
14.
Zurück zum Zitat Cheng, P., Chuah, C., & Liu, X. (2004). Energy-aware node placement in wireless sensor networks. Globecom: IEEE Communications Society.CrossRef Cheng, P., Chuah, C., & Liu, X. (2004). Energy-aware node placement in wireless sensor networks. Globecom: IEEE Communications Society.CrossRef
15.
Zurück zum Zitat Li, H., & Shunjie, X. (2010). Energy-efficient node placement in linear wireless sensor networks. In International conference on measuring technology and mechatronics automation (ICMTMA). Li, H., & Shunjie, X. (2010). Energy-efficient node placement in linear wireless sensor networks. In International conference on measuring technology and mechatronics automation (ICMTMA).
16.
Zurück zum Zitat Sazak, N., & Ertug, M. (2017). The effect of node deployment scheme on LWSN lifetime for railway monitoring applications. In 2017 IEEE workshop on environmental, energy, and structural monitoring systems (EESMS) (pp. 1–4). Sazak, N., & Ertug, M. (2017). The effect of node deployment scheme on LWSN lifetime for railway monitoring applications. In 2017 IEEE workshop on environmental, energy, and structural monitoring systems (EESMS) (pp. 1–4).
17.
Zurück zum Zitat Wang, Z., Zhao, X., & Qian, X. (2011). An Energy Balanced Deployment for Linear Wireless Sensor Networks. International Conference on Computer Science and Network Technology. Wang, Z., Zhao, X., & Qian, X. (2011). An Energy Balanced Deployment for Linear Wireless Sensor Networks. International Conference on Computer Science and Network Technology.
18.
Zurück zum Zitat Ali, S., & Qaisar, S. B. (2014). A reliable connectivity based node placement strategy in linear and hierarchical wireless sensor networks. In IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp.763–767). Ali, S., & Qaisar, S. B. (2014). A reliable connectivity based node placement strategy in linear and hierarchical wireless sensor networks. In IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp.763–767).
19.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
20.
Zurück zum Zitat Sinha, K., Sinha, B., & Datta, D. (2011). An energy-efficient communication scheme for wireless networks: A redundant radix-based approach. IEEE Transactions on Wireless Communications, 10(2), 550–559.CrossRef Sinha, K., Sinha, B., & Datta, D. (2011). An energy-efficient communication scheme for wireless networks: A redundant radix-based approach. IEEE Transactions on Wireless Communications, 10(2), 550–559.CrossRef
21.
Zurück zum Zitat Rappaport, T. (1996). Wireless communications: Principles practice. New Jersey: Prentice-Hall Inc.MATH Rappaport, T. (1996). Wireless communications: Principles practice. New Jersey: Prentice-Hall Inc.MATH
22.
Zurück zum Zitat Kurt, S., & Tavli, B. (2017). Path loss modeling for wireless sensor networks: Review of models and comparative evaluations. IEEE Antennas and Propagation Magazine, 59(1), 18–37.CrossRef Kurt, S., & Tavli, B. (2017). Path loss modeling for wireless sensor networks: Review of models and comparative evaluations. IEEE Antennas and Propagation Magazine, 59(1), 18–37.CrossRef
Metadaten
Titel
Linear Wireless Sensor Networks Energy Minimization Using Optimal Placement Strategies of Nodes
verfasst von
Ahmed Hussein
Ahmed Elnakib
Sherif Kishk
Publikationsdatum
01.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07506-9

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt