Skip to main content

2013 | OriginalPaper | Buchkapitel

14. Linearized BGK Model of Heat Transfer

verfasst von : Laurent Gosse

Erschienen in: Computing Qualitatively Correct Approximations of Balance Laws

Verlag: Springer Milan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the kinetic theory of gases, a class of one-dimensional problems can be distinguished for which transverse momentum and heat transfer effects decouple. This feature is revealed by projecting the linearized Boltzmann model onto properly chosen directions (which were originally discovered by Cercignani in the sixties) in a Hilbert space. The shear flow effects follow a scalar integro -differential equation whereas the heat transfer is described by a 2 × 2 coupled system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The notation M(v) refers to an “uniform Maxwellian” which doesn’t depend on the variables t, x. On the other hand, a “local Maxwellian” would be denoted by M (t, x, v).
 
2
k = R, the gas constant when the particle’s mass equals 1.
 
3
Up to the wrong value of Prandtl’s number of 1 against 0.7 for air.
 
4
Zero is excluded.
 
5
5 If the macroscopic mass flux vanishes, the walls are said to have “thermalized” the gas [27].
 
6
The normalization factor is \( \frac{\alpha_1{\alpha}_2\left({\delta}_1-{\delta}_2\right)}{\sqrt{\pi}\left({\alpha}_1+{\alpha}_2-{\alpha}_1{\alpha}_2\right)} \), see [6].
 
7
Actually, since themacroscopic flux term is of the order of 0.3 ≃ 10Δ x, there is only little difference between these results obtained by means of the modified matrices and the ones one can obtain with the matrices written in §3.​3. However, discrepancies may worsen as Δ x is decreased.
 
Literatur
1.
Zurück zum Zitat Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162, 327-366 (2002)CrossRefMATHMathSciNet Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162, 327-366 (2002)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Aoki K., Cercignani C.: A technique for time-dependent boundary value problems in the kinetic theory of gases. Part I: Basic analysis. J. Appl. Math. Phys. (ZAMP) 35, 127-143 (1984) Aoki K., Cercignani C.: A technique for time-dependent boundary value problems in the kinetic theory of gases. Part I: Basic analysis. J. Appl. Math. Phys. (ZAMP) 35, 127-143 (1984)
3.
Zurück zum Zitat Appell J., Kalitvin A.S., Zabrejko P.P.: Boundary value problems for integro-differential equations of Barbashin type. J. Integral Equ. Applic. 6, 1-30 (1994)CrossRefMATHMathSciNet Appell J., Kalitvin A.S., Zabrejko P.P.: Boundary value problems for integro-differential equations of Barbashin type. J. Integral Equ. Applic. 6, 1-30 (1994)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Arnold A., Carrillo J.A., Tidriri M.D.: Large-time behavior of discrete equations with non- symmetric interactions. Math. Mod. Meth. in Appl. Sci. 12, 1555-1564 (2002)CrossRefMATHMathSciNet Arnold A., Carrillo J.A., Tidriri M.D.: Large-time behavior of discrete equations with non- symmetric interactions. Math. Mod. Meth. in Appl. Sci. 12, 1555-1564 (2002)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63, 323-344 (1991)CrossRefMATHMathSciNet Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63, 323-344 (1991)CrossRefMATHMathSciNet
6.
Zurück zum Zitat Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP 52, 517-534 (2001)CrossRefMATHMathSciNet Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP 52, 517-534 (2001)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. JQSRT 62, 665-675 (1999)CrossRef Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. JQSRT 62, 665-675 (1999)CrossRef
9.
Zurück zum Zitat Bassanini P., Cercignani C., Pagani C.D.: Comparison of kinetic theory analyses of linearized heat transfer between parallel plates. Int. J. Heat Mass Transfer 10, 447-460 (1967)CrossRef Bassanini P., Cercignani C., Pagani C.D.: Comparison of kinetic theory analyses of linearized heat transfer between parallel plates. Int. J. Heat Mass Transfer 10, 447-460 (1967)CrossRef
10.
Zurück zum Zitat Bassanini P., Cercignani C., Pagani C.D.: Influence of the accommodation coefficient on the heat transfer in a rarefied gas. Int. J. Heat Mass Transfer 11, 1359-1368 (1968)CrossRefMATH Bassanini P., Cercignani C., Pagani C.D.: Influence of the accommodation coefficient on the heat transfer in a rarefied gas. Int. J. Heat Mass Transfer 11, 1359-1368 (1968)CrossRefMATH
11.
Zurück zum Zitat Beals R.: An abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal. 34, 1-20 (1979)CrossRefMATHMathSciNet Beals R.: An abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal. 34, 1-20 (1979)CrossRefMATHMathSciNet
12.
13.
Zurück zum Zitat Bennoune M., Lemou M., Mieussens L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comp. Phys. 227, 3781-3803 (2008)CrossRefMATHMathSciNet Bennoune M., Lemou M., Mieussens L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comp. Phys. 227, 3781-3803 (2008)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Biryuk A., Craig W., Panferov V.: Strong solutions of the Boltzmann equation in one spatial dimension. C.R. Acad. Sci. Paris Série I 342, 843-848 (2006)CrossRefMATH Biryuk A., Craig W., Panferov V.: Strong solutions of the Boltzmann equation in one spatial dimension. C.R. Acad. Sci. Paris Série I 342, 843-848 (2006)CrossRefMATH
16.
Zurück zum Zitat Case K.M., Zweifel P.F.: Linear transport theory. Addison-Wesley series in nuclear engineering. Addison-Wesley, Boston (1967)MATH Case K.M., Zweifel P.F.: Linear transport theory. Addison-Wesley series in nuclear engineering. Addison-Wesley, Boston (1967)MATH
17.
Zurück zum Zitat Cercignani C.: Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem. Ann. Physics 20, 219-233 (1962)CrossRefMATHMathSciNet Cercignani C.: Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem. Ann. Physics 20, 219-233 (1962)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Cercignani C.: Plane Couette flow according to the method of elementary solutions. J. Math. Anal. Applic. 11, 93-101 (1965)CrossRefMathSciNet Cercignani C.: Plane Couette flow according to the method of elementary solutions. J. Math. Anal. Applic. 11, 93-101 (1965)CrossRefMathSciNet
19.
Zurück zum Zitat Cercignani C.: Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics. J. Quant. Spectrosc. Radiat. Transfer 11, 973-985 (1971)CrossRefMathSciNet Cercignani C.: Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics. J. Quant. Spectrosc. Radiat. Transfer 11, 973-985 (1971)CrossRefMathSciNet
20.
Zurück zum Zitat Cercignani C.: Analytic solution of the temperature jump problem for the BGK model. TTSP 6, 29 (1977)MATHMathSciNet Cercignani C.: Analytic solution of the temperature jump problem for the BGK model. TTSP 6, 29 (1977)MATHMathSciNet
21.
Zurück zum Zitat Cercignani C.: Solution of a linearized kinetic model for an ultrarelativistic gas. J. Stat. Phys. 42, 601-620 (1986)CrossRefMathSciNet Cercignani C.: Solution of a linearized kinetic model for an ultrarelativistic gas. J. Stat. Phys. 42, 601-620 (1986)CrossRefMathSciNet
22.
23.
Zurück zum Zitat Cercignani C.: Slow Rarefied Flows; Theory and Application to Micro-Electro-Mechanical Systems. Progress in Mathematical Physics, Birkhäuser Verlag, Basel Boston Berlin (2006)MATH Cercignani C.: Slow Rarefied Flows; Theory and Application to Micro-Electro-Mechanical Systems. Progress in Mathematical Physics, Birkhäuser Verlag, Basel Boston Berlin (2006)MATH
24.
Zurück zum Zitat Cercignani C., Sernagiotto F.: The method of elementary solutions for time-dependent problems in linearized kinetic theory. Ann. Physics 30, 154-167 (1964)CrossRefMathSciNet Cercignani C., Sernagiotto F.: The method of elementary solutions for time-dependent problems in linearized kinetic theory. Ann. Physics 30, 154-167 (1964)CrossRefMathSciNet
26.
Zurück zum Zitat De Groot E., Dalitz C.: Exact solution for a boundary value problem in semiconductor kinetic theory. J. Math. Phys. 38, 4629-4643 (1997)CrossRefMATHMathSciNet De Groot E., Dalitz C.: Exact solution for a boundary value problem in semiconductor kinetic theory. J. Math. Phys. 38, 4629-4643 (1997)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Desvillettes L.: Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rat. Mech. Anal. 110, 73-91 (1990)CrossRefMATHMathSciNet Desvillettes L.: Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Rat. Mech. Anal. 110, 73-91 (1990)CrossRefMATHMathSciNet
28.
Zurück zum Zitat Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848-858 (2009)CrossRefMATHMathSciNet Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848-858 (2009)CrossRefMATHMathSciNet
29.
Zurück zum Zitat Frangi A., Frezzotti A., Lorenzani S.: On the application of the BGK kinetic model to the analysis of gas-structure interaction in MEMS. Computers and Structures 85, 810-817 (2007)CrossRef Frangi A., Frezzotti A., Lorenzani S.: On the application of the BGK kinetic model to the analysis of gas-structure interaction in MEMS. Computers and Structures 85, 810-817 (2007)CrossRef
30.
Zurück zum Zitat Filbet F., Jin S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. 229, 7625-7648 (2010)CrossRefMATHMathSciNet Filbet F., Jin S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comp. Phys. 229, 7625-7648 (2010)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Gosse L.: Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case’s elementary solutions. J. Quant. Spectr. & Radiat. Transfer 112, 1995- 2012(2011)CrossRef Gosse L.: Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on Case’s elementary solutions. J. Quant. Spectr. & Radiat. Transfer 112, 1995- 2012(2011)CrossRef
32.
Zurück zum Zitat Gosse L., Toscani G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. Acad. Sci. Paris 334, 337-342 (2002)MATH Gosse L., Toscani G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. Acad. Sci. Paris 334, 337-342 (2002)MATH
33.
Zurück zum Zitat Gosse L., Toscani G.: Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41, 641-658 (2003)CrossRefMATHMathSciNet Gosse L., Toscani G.: Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41, 641-658 (2003)CrossRefMATHMathSciNet
34.
Zurück zum Zitat Greenberg J., LeRoux A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1-16 (1996)CrossRefMathSciNet Greenberg J., LeRoux A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1-16 (1996)CrossRefMathSciNet
35.
36.
Zurück zum Zitat Hadjiconstantinou N., Garcia A.: Molecular simulations of sound wave propagation in simple gases. Physics of Fluids 13, 1040-1046 (2001)CrossRefMATH Hadjiconstantinou N., Garcia A.: Molecular simulations of sound wave propagation in simple gases. Physics of Fluids 13, 1040-1046 (2001)CrossRefMATH
37.
Zurück zum Zitat Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625-640 (1995)CrossRefMATHMathSciNet Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625-640 (1995)CrossRefMATHMathSciNet
38.
39.
Zurück zum Zitat Kadir Aziz A., French D.A., Jensen S., Kellogg R.B.: Origins, analysis, numerical analysis and numerical approximation of a forward-backward parabolic problem. Math. Modell. Numer. Anal. (M2AN) 33, 895-922 (1999) Kadir Aziz A., French D.A., Jensen S., Kellogg R.B.: Origins, analysis, numerical analysis and numerical approximation of a forward-backward parabolic problem. Math. Modell. Numer. Anal. (M2AN) 33, 895-922 (1999)
40.
Zurück zum Zitat Kaper H.: A constructive approach to the solution of a class of boundary value problems of mixed type. J. Math. Anal. Applic. 63, 691-718 (1978)CrossRefMATHMathSciNet Kaper H.: A constructive approach to the solution of a class of boundary value problems of mixed type. J. Math. Anal. Applic. 63, 691-718 (1978)CrossRefMATHMathSciNet
41.
Zurück zum Zitat Kaper H.: Boundary value problems of mixed type arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 161-178 (1979)CrossRefMATHMathSciNet Kaper H.: Boundary value problems of mixed type arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 161-178 (1979)CrossRefMATHMathSciNet
42.
Zurück zum Zitat Kaper H.: Spectral representation of an unbounded linear transformation arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 179-191 (1979)CrossRefMATHMathSciNet Kaper H.: Spectral representation of an unbounded linear transformation arising in the kinetic theory of gases. SIAM J. Math. Anal. 10, 179-191 (1979)CrossRefMATHMathSciNet
43.
44.
Zurück zum Zitat Kremer G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin Heidelberg (2010)CrossRefMATH Kremer G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin Heidelberg (2010)CrossRefMATH
45.
Zurück zum Zitat Kriese J.T., Chang T.S., Siewert C.E.: Elementary solutions of coupled model equations in the kinetic theory of gases. Int. J. Eng. Sci. 12, 441-470 (1974)CrossRefMATHMathSciNet Kriese J.T., Chang T.S., Siewert C.E.: Elementary solutions of coupled model equations in the kinetic theory of gases. Int. J. Eng. Sci. 12, 441-470 (1974)CrossRefMATHMathSciNet
46.
Zurück zum Zitat Latyshev A.V.: The use of Case’s method to solve the linearized BGK equations for the temperature-jump problem, Progr. Math. Mech. USSR 54 (1990), 480-484.MATH Latyshev A.V.: The use of Case’s method to solve the linearized BGK equations for the temperature-jump problem, Progr. Math. Mech. USSR 54 (1990), 480-484.MATH
47.
Zurück zum Zitat Latyshev A.V., Yushkanov A.A.: An analytic solution of the problem of the temperature jumps and vapour density over a surface when there is a temperature gradient. J. Applied Math. Mech. 58, 259-265 (1994)CrossRefMATHMathSciNet Latyshev A.V., Yushkanov A.A.: An analytic solution of the problem of the temperature jumps and vapour density over a surface when there is a temperature gradient. J. Applied Math. Mech. 58, 259-265 (1994)CrossRefMATHMathSciNet
48.
Zurück zum Zitat LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309-1342 (1999)CrossRefMATHMathSciNet LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309-1342 (1999)CrossRefMATHMathSciNet
50.
Zurück zum Zitat Liu T.P., Yu S.H.: Boltzmann equation: micro-macro decomposition and positivity of shock profiles. Comm. Math. Phys. 246, 133-179 (2004)CrossRefMATHMathSciNet Liu T.P., Yu S.H.: Boltzmann equation: micro-macro decomposition and positivity of shock profiles. Comm. Math. Phys. 246, 133-179 (2004)CrossRefMATHMathSciNet
51.
Zurück zum Zitat Ohwada T.: Boltzmann schemes for the compressible Navier-Stokes equations. In: Bartel T.J., Gallis M.A. (eds.) Rarefied gas dynamics: 22nd Internat. Symp., pp. 321-328 (2001) Ohwada T.: Boltzmann schemes for the compressible Navier-Stokes equations. In: Bartel T.J., Gallis M.A. (eds.) Rarefied gas dynamics: 22nd Internat. Symp., pp. 321-328 (2001)
52.
Zurück zum Zitat Pareschi L., Perthame B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theo. Stat. Phys. 25, 369-383 (1996)CrossRefMATHMathSciNet Pareschi L., Perthame B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theo. Stat. Phys. 25, 369-383 (1996)CrossRefMATHMathSciNet
53.
Zurück zum Zitat Pareschi L., Russo G.: Numerical solution of the Boltzmann equation: I. spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217-1245 (2000) Pareschi L., Russo G.: Numerical solution of the Boltzmann equation: I. spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217-1245 (2000)
54.
Zurück zum Zitat Pareschi L., Russo G.: An introduction to the numerical analysis of the Boltzmann equation. Riv. Mat. Univ. Parma 4, 145-250 (2005)MATHMathSciNet Pareschi L., Russo G.: An introduction to the numerical analysis of the Boltzmann equation. Riv. Mat. Univ. Parma 4, 145-250 (2005)MATHMathSciNet
56.
57.
Zurück zum Zitat Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. I Flow problems. ZAMP 60, 70-115 (2009)MATHMathSciNet Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. I Flow problems. ZAMP 60, 70-115 (2009)MATHMathSciNet
58.
Zurück zum Zitat Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. II Heat transfer problems. ZAMP 60, 651-687 (2009)MATHMathSciNet Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. II Heat transfer problems. ZAMP 60, 651-687 (2009)MATHMathSciNet
60.
Zurück zum Zitat Siewert C.E.: A discrete-ordinates solution for heat transfer in a plane channel. J. Comp. Phys. 152,251-263 (1999)CrossRefMATH Siewert C.E.: A discrete-ordinates solution for heat transfer in a plane channel. J. Comp. Phys. 152,251-263 (1999)CrossRefMATH
61.
Zurück zum Zitat Siewert C.E., Burniston E.E.: Half-space analysis basic to the time-dependent BGK model in the kinetic theory of gases. J. Math. Phys. 18, 376-380 (1977)CrossRefMathSciNet Siewert C.E., Burniston E.E.: Half-space analysis basic to the time-dependent BGK model in the kinetic theory of gases. J. Math. Phys. 18, 376-380 (1977)CrossRefMathSciNet
62.
Zurück zum Zitat Siewert C.E., Burniston E.E., Thomas Jr. J.R.: Discrete spectrum basic to kinetic theory. Phys. Fluids 16, 1532-1533 (1971)CrossRefMATH Siewert C.E., Burniston E.E., Thomas Jr. J.R.: Discrete spectrum basic to kinetic theory. Phys. Fluids 16, 1532-1533 (1971)CrossRefMATH
63.
Zurück zum Zitat Siewert C.E., Kriese J.T.: Half-space orthogonality relations basic to the solution of time-dependent boundary value problems in the kinetic theory of gases. ZAMP 29, 199-205 (1978)CrossRefMATH Siewert C.E., Kriese J.T.: Half-space orthogonality relations basic to the solution of time-dependent boundary value problems in the kinetic theory of gases. ZAMP 29, 199-205 (1978)CrossRefMATH
64.
Zurück zum Zitat Siewert C.E., Wright S.J.: Efficient eigenvalue calculations in radiative transfer. J. Quant. Spectro. Radiat. Transf., 685-688 (1999) Siewert C.E., Wright S.J.: Efficient eigenvalue calculations in radiative transfer. J. Quant. Spectro. Radiat. Transf., 685-688 (1999)
65.
Zurück zum Zitat Thomas J.R., Siewert C.E.: Sound wave propagation in a rarefied gas. Transp. Theory Stat. Phys. 8, 219-240 (1979)CrossRefMATH Thomas J.R., Siewert C.E.: Sound wave propagation in a rarefied gas. Transp. Theory Stat. Phys. 8, 219-240 (1979)CrossRefMATH
66.
Zurück zum Zitat Tzavaras A.E.: On the mathematical theory of fluid dynamic limits to conservation laws In: Malek. Nečas J. J., Rokyta M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 192222. Springer, New York (2000) Tzavaras A.E.: On the mathematical theory of fluid dynamic limits to conservation laws In: Malek. Nečas J. J., Rokyta M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 192222. Springer, New York (2000)
67.
Zurück zum Zitat Van der Mee C.: Exponentially dichotomous operators and applications. Birkhäuser Verlag AG, Basel Boston Berlin (2008)MATH Van der Mee C.: Exponentially dichotomous operators and applications. Birkhäuser Verlag AG, Basel Boston Berlin (2008)MATH
68.
69.
Zurück zum Zitat Villani C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics vol. 1, pp. 71-305. North Holland (2002) Villani C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics vol. 1, pp. 71-305. North Holland (2002)
70.
Zurück zum Zitat Williams M.M.R.: A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat Transfer. Z. Angew. Math. Phys. 52, 500-516 (2001)CrossRefMATHMathSciNet Williams M.M.R.: A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat Transfer. Z. Angew. Math. Phys. 52, 500-516 (2001)CrossRefMATHMathSciNet
Metadaten
Titel
Linearized BGK Model of Heat Transfer
verfasst von
Laurent Gosse
Copyright-Jahr
2013
Verlag
Springer Milan
DOI
https://doi.org/10.1007/978-88-470-2892-0_14

Premium Partner