Skip to main content

2018 | OriginalPaper | Buchkapitel

Sediment Microbial Fuel Cells in Relation to Anaerobic Digestion Technology

verfasst von : Syed Zaghum Abbas, Mohd Rafatullah

Erschienen in: Anaerobic Digestion Processes

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An anaerobic sediment microbial fuel cell (SMFC) is a device that with the help of microbial catalytic activities, simultaneously bioremediate pollutants and transfers chemical energy into electricity. SMFC attracts the attention of many researchers due to its mild operating conditions. In SMFC operation, exoelectrogens and electrotrophs are mostly involved. Although there is the great capacity of SMFC such as an alternative energy source, a biosensor for pollutants and oxygen, and a novel wastewater treatment system, high optimization is needed to accomplish the maximum microbial potential. Power output and Coulombic efficiency are significantly affected by the diversity of microbes in the anodic chamber of an SMFC, design of the SMFC and operational conditions. Until now, real-world applications of SMFC have been limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve this performance and reduce the construction and operating costs of SMFC. To date, most SMFCs have been operated at a laboratory scale. In the future, scaling-up of SMFCs will be required to overcome the many hurdles and tackle the many new challenges. The objective of this study is to investigate the different aspects of optimal design of SMFC, which will be practised at field level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond Ser B, Containing Papers Biol Character 84(571):260–276CrossRef Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond Ser B, Containing Papers Biol Character 84(571):260–276CrossRef
2.
Zurück zum Zitat Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13(7):475–478CrossRef Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13(7):475–478CrossRef
3.
Zurück zum Zitat Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35(1):192–195CrossRef Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35(1):192–195CrossRef
4.
Zurück zum Zitat Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485CrossRef Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485CrossRef
5.
Zurück zum Zitat Pham T, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292CrossRef Pham T, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292CrossRef
6.
Zurück zum Zitat Abbas SZ, Rafatullah M, Ismail N, Syakir MI (2017) A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res 41(9):1242–1264CrossRef Abbas SZ, Rafatullah M, Ismail N, Syakir MI (2017) A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res 41(9):1242–1264CrossRef
7.
Zurück zum Zitat Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596CrossRef Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596CrossRef
8.
Zurück zum Zitat ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev 39:617–627CrossRef ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev 39:617–627CrossRef
9.
Zurück zum Zitat Kothapalli AL (2013) Sediment microbial fuel cell as sustainable power resource. The University of Wisconsin-Milwaukee Kothapalli AL (2013) Sediment microbial fuel cell as sustainable power resource. The University of Wisconsin-Milwaukee
10.
Zurück zum Zitat Macknick J, Newmark R, Heath G, Hallett K (2012) Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett 7(4):1–10 Macknick J, Newmark R, Heath G, Hallett K (2012) Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett 7(4):1–10
11.
Zurück zum Zitat Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRef Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRef
12.
Zurück zum Zitat Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381CrossRef Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381CrossRef
13.
Zurück zum Zitat Rezaei F, Richard TL, Logan BE (2009) Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells. J Power Sources 192(2):304–309CrossRef Rezaei F, Richard TL, Logan BE (2009) Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells. J Power Sources 192(2):304–309CrossRef
14.
Zurück zum Zitat Luo Y, Liu G, Zhang R, Zhang C (2010) Power generation from furfural using the microbial fuel cell. J Power Sources 195(1):190–194CrossRef Luo Y, Liu G, Zhang R, Zhang C (2010) Power generation from furfural using the microbial fuel cell. J Power Sources 195(1):190–194CrossRef
15.
Zurück zum Zitat Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175(1):196–200CrossRef Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175(1):196–200CrossRef
16.
Zurück zum Zitat Manohar AK, Mansfeld F (2009) The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim Acta 54(6):1664–1670CrossRef Manohar AK, Mansfeld F (2009) The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim Acta 54(6):1664–1670CrossRef
17.
Zurück zum Zitat Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24(4):849–854CrossRef Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24(4):849–854CrossRef
18.
Zurück zum Zitat Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2):259–264CrossRef Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2):259–264CrossRef
19.
Zurück zum Zitat Ha PT, Tae B, Chang IS (2007) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22(1):164–168CrossRef Ha PT, Tae B, Chang IS (2007) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22(1):164–168CrossRef
20.
Zurück zum Zitat Behera M, Ghangrekar M (2009) Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour Technol 100(21):5114–5121CrossRef Behera M, Ghangrekar M (2009) Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour Technol 100(21):5114–5121CrossRef
21.
Zurück zum Zitat Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880CrossRef Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880CrossRef
22.
Zurück zum Zitat Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54(3):1109–1114CrossRef Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54(3):1109–1114CrossRef
23.
Zurück zum Zitat Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78(5):531–537CrossRef Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78(5):531–537CrossRef
24.
Zurück zum Zitat Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968CrossRef Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968CrossRef
25.
Zurück zum Zitat Mohan SV, Mohanakrishna G, Reddy BP, Saravanan R, Sarma P (2008) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39(1):121–130CrossRef Mohan SV, Mohanakrishna G, Reddy BP, Saravanan R, Sarma P (2008) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39(1):121–130CrossRef
26.
Zurück zum Zitat Huang L, Angelidaki I (2008) Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol Bioeng 100(3):413–422CrossRef Huang L, Angelidaki I (2008) Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol Bioeng 100(3):413–422CrossRef
27.
Zurück zum Zitat Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 44(2):112–119CrossRef Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 44(2):112–119CrossRef
28.
Zurück zum Zitat Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23(6):820–826CrossRef Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23(6):820–826CrossRef
29.
Zurück zum Zitat Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535CrossRef Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535CrossRef
30.
Zurück zum Zitat Chae K-J, Choi M-J, Lee J-W, Kim K-Y, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525CrossRef Chae K-J, Choi M-J, Lee J-W, Kim K-Y, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525CrossRef
31.
Zurück zum Zitat Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour Technol 100(20):4704–4710CrossRef Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour Technol 100(20):4704–4710CrossRef
32.
Zurück zum Zitat Sun J, Y-y Hu, Bi Z, Y-q Cao (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100(13):3185–3192CrossRef Sun J, Y-y Hu, Bi Z, Y-q Cao (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100(13):3185–3192CrossRef
33.
Zurück zum Zitat Wei T, Ma H, Nakano A (2016) Decaheme cytochrome MtrF adsorption and electron transfer on gold surface. J Phys Chem Lett 7(5):929–936CrossRef Wei T, Ma H, Nakano A (2016) Decaheme cytochrome MtrF adsorption and electron transfer on gold surface. J Phys Chem Lett 7(5):929–936CrossRef
34.
Zurück zum Zitat Estevez-Canales M, Kuzume A, Borjas Z, Füeg M, Lovley D, Wandlowski T, Esteve-Núñez A (2015) A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ Microbiol Rep 7(2):219–226CrossRef Estevez-Canales M, Kuzume A, Borjas Z, Füeg M, Lovley D, Wandlowski T, Esteve-Núñez A (2015) A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ Microbiol Rep 7(2):219–226CrossRef
35.
Zurück zum Zitat Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906CrossRef Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906CrossRef
36.
Zurück zum Zitat Nguyen TA, Lu Y, Yang X, Shi X (2007) Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41(23):7987–7996CrossRef Nguyen TA, Lu Y, Yang X, Shi X (2007) Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41(23):7987–7996CrossRef
37.
Zurück zum Zitat Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42(6):1387–1396CrossRef Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42(6):1387–1396CrossRef
38.
Zurück zum Zitat Lefebvre O, Al-Mamun A, Ng H (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58(4):881–885CrossRef Lefebvre O, Al-Mamun A, Ng H (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58(4):881–885CrossRef
39.
Zurück zum Zitat Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947CrossRef Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947CrossRef
40.
Zurück zum Zitat Lojou E, Durand M, Dolla A, Bianco P (2002) Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14(13):913–922CrossRef Lojou E, Durand M, Dolla A, Bianco P (2002) Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14(13):913–922CrossRef
41.
Zurück zum Zitat Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090CrossRef Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090CrossRef
42.
Zurück zum Zitat Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1–2):31–37 Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1–2):31–37
43.
Zurück zum Zitat Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:1–8 Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:1–8
44.
Zurück zum Zitat Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRef Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRef
45.
Zurück zum Zitat Zhan G, Zhang L, Li D, Su W, Tao Y, Qian J (2012) Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell. Bioresour Technol 116:271–277CrossRef Zhan G, Zhang L, Li D, Su W, Tao Y, Qian J (2012) Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell. Bioresour Technol 116:271–277CrossRef
46.
Zurück zum Zitat Sherafatmand M, Ng HY (2015) Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 195:122–130CrossRef Sherafatmand M, Ng HY (2015) Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 195:122–130CrossRef
47.
Zurück zum Zitat Pous N, Puig S, Coma M, Balaguer MD, Colprim J (2013) Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol 88(9):1690–1696CrossRef Pous N, Puig S, Coma M, Balaguer MD, Colprim J (2013) Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol 88(9):1690–1696CrossRef
48.
Zurück zum Zitat Manassaram DM, Backer LC, Moll DM (2007) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Ciencia & saude coletiva 12(1):153–163CrossRef Manassaram DM, Backer LC, Moll DM (2007) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Ciencia & saude coletiva 12(1):153–163CrossRef
49.
Zurück zum Zitat Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604CrossRef Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604CrossRef
50.
Zurück zum Zitat Mook W, Chakrabarti M, Aroua M, Khan G, Ali B, Islam M, Hassan MA (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination 285:1–13CrossRef Mook W, Chakrabarti M, Aroua M, Khan G, Ali B, Islam M, Hassan MA (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination 285:1–13CrossRef
51.
Zurück zum Zitat Abbas SZ, Rafatullah M, Ismail N, Nastro RA (2017) Enhanced bioremediation of toxic metals and harvesting electricity through sediment microbial fuel cell. Int J Energy Res 41(14):2345–2355CrossRef Abbas SZ, Rafatullah M, Ismail N, Nastro RA (2017) Enhanced bioremediation of toxic metals and harvesting electricity through sediment microbial fuel cell. Int J Energy Res 41(14):2345–2355CrossRef
52.
Zurück zum Zitat Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43(12):1352–1358CrossRef Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43(12):1352–1358CrossRef
53.
Zurück zum Zitat Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390CrossRef Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390CrossRef
54.
Zurück zum Zitat Cho DH, Yoo MH, Kim EY (2004) Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol 14(2):250–255 Cho DH, Yoo MH, Kim EY (2004) Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol 14(2):250–255
55.
Zurück zum Zitat Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90CrossRef Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90CrossRef
56.
Zurück zum Zitat Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T, Amano Y (2008) Screening and investigation of dye decolorization activities of basidiomycetes. J Biosci Bioeng 105(1):69–72CrossRef Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T, Amano Y (2008) Screening and investigation of dye decolorization activities of basidiomycetes. J Biosci Bioeng 105(1):69–72CrossRef
57.
Zurück zum Zitat Ramalho PA (2005) Degradation of dyes with microorganisms: studies with ascomycete yeasts. Universidade do minho escola de ciências, escola de engenharia, Portugal Ramalho PA (2005) Degradation of dyes with microorganisms: studies with ascomycete yeasts. Universidade do minho escola de ciências, escola de engenharia, Portugal
58.
Zurück zum Zitat Shugaba A, Buba F, Kolo B, Nok A, Ameh D, Lori J (2012) Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. J Petrol Environ Biotechnol 3(3):1–8CrossRef Shugaba A, Buba F, Kolo B, Nok A, Ameh D, Lori J (2012) Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. J Petrol Environ Biotechnol 3(3):1–8CrossRef
59.
Zurück zum Zitat Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43(21):8159–8165CrossRef Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43(21):8159–8165CrossRef
60.
Zurück zum Zitat He Q, Yao K (2011) Impact of alternative electron acceptors on selenium (IV) reduction by Anaeromyxobacter dehalogenans. Bioresour Technol 102(3):3578–3580CrossRef He Q, Yao K (2011) Impact of alternative electron acceptors on selenium (IV) reduction by Anaeromyxobacter dehalogenans. Bioresour Technol 102(3):3578–3580CrossRef
61.
Zurück zum Zitat Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12(1):1–6CrossRef Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12(1):1–6CrossRef
62.
Zurück zum Zitat Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. Acs Sustain Chem Eng 1(9):1165–1171CrossRef Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. Acs Sustain Chem Eng 1(9):1165–1171CrossRef
63.
Zurück zum Zitat Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9(72):1705–1712CrossRef Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9(72):1705–1712CrossRef
64.
Zurück zum Zitat Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(5):2694–2699CrossRef Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(5):2694–2699CrossRef
65.
Zurück zum Zitat Gauthier D, Søbjerg LS, Jensen KM, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T (2010) Environmentally benign recovery and reactivation of palladium from industrial waste by using gram-negative bacteria. ChemSusChem 3(9):1036–1039CrossRef Gauthier D, Søbjerg LS, Jensen KM, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T (2010) Environmentally benign recovery and reactivation of palladium from industrial waste by using gram-negative bacteria. ChemSusChem 3(9):1036–1039CrossRef
66.
Zurück zum Zitat Shukor M, Rahman M, Suhaili Z, Shamaan N, Syed M (2010) Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol 55(2):137–143CrossRef Shukor M, Rahman M, Suhaili Z, Shamaan N, Syed M (2010) Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol 55(2):137–143CrossRef
67.
Zurück zum Zitat Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe (III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55(4):1667–1674CrossRef Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe (III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55(4):1667–1674CrossRef
68.
Zurück zum Zitat Lim H, Syed M, Shukor M (2012) Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol 52(3):296–305CrossRef Lim H, Syed M, Shukor M (2012) Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol 52(3):296–305CrossRef
69.
Zurück zum Zitat Kritee K, Blum JD, Barkay T (2008) Mercury stable isotope fractionation during reduction of Hg (II) by different microbial pathways. Environ Sci Technol 42(24):9171–9177CrossRef Kritee K, Blum JD, Barkay T (2008) Mercury stable isotope fractionation during reduction of Hg (II) by different microbial pathways. Environ Sci Technol 42(24):9171–9177CrossRef
70.
Zurück zum Zitat Rahman M, Shukor M, Suhaili Z, Mustafa S, Shamaan N, Syed M (2009) Reduction of Mo (VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol 30(1):65–72 Rahman M, Shukor M, Suhaili Z, Mustafa S, Shamaan N, Syed M (2009) Reduction of Mo (VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol 30(1):65–72
72.
Zurück zum Zitat Hartline RM, Call DF (2016) Substrate and electrode potential affect electrotrophic activity of inverted bioanodes. Bioelectrochemistry 110:13–18CrossRef Hartline RM, Call DF (2016) Substrate and electrode potential affect electrotrophic activity of inverted bioanodes. Bioelectrochemistry 110:13–18CrossRef
73.
Zurück zum Zitat Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473CrossRef Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473CrossRef
74.
Zurück zum Zitat He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19–20):2009–2015CrossRef He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19–20):2009–2015CrossRef
Metadaten
Titel
Sediment Microbial Fuel Cells in Relation to Anaerobic Digestion Technology
verfasst von
Syed Zaghum Abbas
Mohd Rafatullah
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8129-3_3