Skip to main content

2014 | OriginalPaper | Buchkapitel

Characterisation of Pyroelectric Materials

verfasst von : Roger Whatmore

Erschienen in: Characterisation of Ferroelectric Bulk Materials and Thin Films

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pyroelectrics form a very broad class of materials. Any material which has a crystal structure possessing a polar point symmetry—i.e. one which both lacks a centre of symmetry and has a unique axis of symmetry—will possess an intrinsic, or spontaneous, polarisation and show the pyroelectric effect. The pyroelectric effect is a change in that spontaneous polarisation caused by a change in temperature. It is manifested as the appearance of free charge at the surfaces of the material, or a flow of current in an external circuit connected to it. The effect is a simple one, but it has been used in a range of sensing devices, most notably uncooled pyroelectric infra-red (PIR) sensors, and has thus come to be of some engineering and economic significance, enabling a wide range of sensing systems, ranging from burglar alarms through FTIR spectroscopic instruments to thermal imagers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Whatmore, R.W.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)CrossRef Whatmore, R.W.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)CrossRef
2.
Zurück zum Zitat Whatmore, R.W., Watton, R.: Pyroelectric materials and devices. In: Capper, P., Elliott, C.T. (eds.) Infrared Detectors and Emitters: Materials and Devices, pp. 99–148. Kluwer Academic Publishers, The Netherlands (1998) Whatmore, R.W., Watton, R.: Pyroelectric materials and devices. In: Capper, P., Elliott, C.T. (eds.) Infrared Detectors and Emitters: Materials and Devices, pp. 99–148. Kluwer Academic Publishers, The Netherlands (1998)
3.
Zurück zum Zitat Evans, R.C.: An Introduction to Crystal Chemistry. Cambridge University Press, Cambridge (1964) Evans, R.C.: An Introduction to Crystal Chemistry. Cambridge University Press, Cambridge (1964)
4.
Zurück zum Zitat Whatmore, R.W.: Ferroelectric Materials. In: Kasap, S., Capper, P., (eds.) Handbook of Electronic and Photonic Materials, pp 597–623. Springer, Heidelberg (2006) Whatmore, R.W.: Ferroelectric Materials. In: Kasap, S., Capper, P., (eds.) Handbook of Electronic and Photonic Materials, pp 597–623. Springer, Heidelberg (2006)
5.
Zurück zum Zitat Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. In: Oxford Science Publications. Clarendon Press, Oxford (1985) Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. In: Oxford Science Publications. Clarendon Press, Oxford (1985)
6.
Zurück zum Zitat Pontes, W., de Carvalho, A.A., Sakamoto, W.K., de Paula, M.H., Sanches, M.A.A., de Freitas, R.L.B., César, R.B.P., Piubéli, S.L.: PZT for measuring energy fluence rate of x-ray used in superficial cancer therapy. Instrum. Sci. Technol. 38(3), 210–219 (2010) Pontes, W., de Carvalho, A.A., Sakamoto, W.K., de Paula, M.H., Sanches, M.A.A., de Freitas, R.L.B., César, R.B.P., Piubéli, S.L.: PZT for measuring energy fluence rate of x-ray used in superficial cancer therapy. Instrum. Sci. Technol. 38(3), 210–219 (2010)
7.
Zurück zum Zitat Lee, T.M., Anderson, A.P., Benson, F.A.: Microwave field-detecting element based on pyroelectric effect in PVDF. Electron. Lett. 22(4), 200–202 (1986)CrossRef Lee, T.M., Anderson, A.P., Benson, F.A.: Microwave field-detecting element based on pyroelectric effect in PVDF. Electron. Lett. 22(4), 200–202 (1986)CrossRef
8.
Zurück zum Zitat Kruse, P.W.: Uncooled IR focal plane arrays. In: SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2552, pp. 556–563 (1995) Kruse, P.W.: Uncooled IR focal plane arrays. In: SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2552, pp. 556–563 (1995)
9.
Zurück zum Zitat Nelms, N., Dowson, J.: Goldblack coating for thermal infrared detectors. Sens. Actuators, A 120(2), 403–407 (2005) Nelms, N., Dowson, J.: Goldblack coating for thermal infrared detectors. Sens. Actuators, A 120(2), 403–407 (2005)
10.
Zurück zum Zitat Lang, W., Kühl, K., Sandmaier, H.: Absorbing layers for thermal infrared detectors. Sens. Actuators, A 34(3), 243–248 (1992)CrossRef Lang, W., Kühl, K., Sandmaier, H.: Absorbing layers for thermal infrared detectors. Sens. Actuators, A 34(3), 243–248 (1992)CrossRef
11.
Zurück zum Zitat Parsons, A.D.: Thin-film infrared absorber structures for advanced thermal detectors. J. Vac. Sci. Technol. A: Vac. Surf. Films 6(3), 1686 (1988) Parsons, A.D.: Thin-film infrared absorber structures for advanced thermal detectors. J. Vac. Sci. Technol. A: Vac. Surf. Films 6(3), 1686 (1988)
12.
Zurück zum Zitat Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44(4), 483–488 (2005)CrossRef Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44(4), 483–488 (2005)CrossRef
13.
Zurück zum Zitat Yun, M., Bock, J., Leduc, H., Day, P., Kim, M.J.: Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays. Nucl. Instrum. Methods Phys. Res. Sect. A 520(1–3), 487–489 (2004) Yun, M., Bock, J., Leduc, H., Day, P., Kim, M.J.: Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays. Nucl. Instrum. Methods Phys. Res. Sect. A 520(1–3), 487–489 (2004)
14.
Zurück zum Zitat Auston, D.H., Glass, A.M.: Optical generation of intense picosecond electrical pulses. Appl. Phys. Lett. 20(10), 398 (1972)CrossRef Auston, D.H., Glass, A.M.: Optical generation of intense picosecond electrical pulses. Appl. Phys. Lett. 20(10), 398 (1972)CrossRef
15.
Zurück zum Zitat Blackmore, V., Doucas, G., Perry, C., Ottewell, B., Kimmitt, M., Woods, M., Molloy, S., Arnold, R.: First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams 12(3), 032803 (2009) Blackmore, V., Doucas, G., Perry, C., Ottewell, B., Kimmitt, M., Woods, M., Molloy, S., Arnold, R.: First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams 12(3), 032803 (2009)
16.
Zurück zum Zitat Porter, S.G., Watton, R., and McEwan, R.K.: Ferroelectric arrays: the route to low-cost uncooled infrared imaging. Proc. SPIE Infrared Technology XXI 2552, 573 (1995) Porter, S.G., Watton, R., and McEwan, R.K.: Ferroelectric arrays: the route to low-cost uncooled infrared imaging. Proc. SPIE Infrared Technology XXI 2552, 573 (1995)
17.
Zurück zum Zitat Putley E.H.: Temperature Noise in Pyroelectric Detectors. Infrared Phys 18(4), 373 (1978) Putley E.H.: Temperature Noise in Pyroelectric Detectors. Infrared Phys 18(4), 373 (1978)
18.
Zurück zum Zitat Putley, E.H.: A method for evaluating the performance of pyroelectric detectors. Infrared Phys. 20(3), 139–147 (1980)CrossRef Putley, E.H.: A method for evaluating the performance of pyroelectric detectors. Infrared Phys. 20(3), 139–147 (1980)CrossRef
19.
Zurück zum Zitat Chang, H.H.S., Whatmore, R.W., Huang, Z.: Pyroelectric effect enhancement in laminate composites under short circuit condition. J. Appl. Phys. 106(11), 114110 (2009)CrossRef Chang, H.H.S., Whatmore, R.W., Huang, Z.: Pyroelectric effect enhancement in laminate composites under short circuit condition. J. Appl. Phys. 106(11), 114110 (2009)CrossRef
20.
Zurück zum Zitat Muralt, P.: Micromachined infrared detectors based on pyroelectric thin films. Rep. Prog. Phys. 64(10), 1339 (2001)CrossRef Muralt, P.: Micromachined infrared detectors based on pyroelectric thin films. Rep. Prog. Phys. 64(10), 1339 (2001)CrossRef
21.
Zurück zum Zitat Shorrocks, N.M., Whatmore, R.W., Robinson, M.K., Porter, S.G.: Low microphony pyroelectric arrays. Proc. SPIE (1985) 588, 44–51 (1986) Shorrocks, N.M., Whatmore, R.W., Robinson, M.K., Porter, S.G.: Low microphony pyroelectric arrays. Proc. SPIE (1985) 588, 44–51 (1986)
22.
Zurück zum Zitat Bell, A.J., Whatmore, R.W.: Electrical conductivity in uranium doped, modified lead zirconate pyroelectric ceramics. Ferroelectrics 37(1), 543–546 (1981)CrossRef Bell, A.J., Whatmore, R.W.: Electrical conductivity in uranium doped, modified lead zirconate pyroelectric ceramics. Ferroelectrics 37(1), 543–546 (1981)CrossRef
23.
Zurück zum Zitat Whatmore, R.W.: High performance, conducting pyroelectric ceramics. Ferroelectrics 49(1), 201–210 (1983)CrossRef Whatmore, R.W.: High performance, conducting pyroelectric ceramics. Ferroelectrics 49(1), 201–210 (1983)CrossRef
24.
Zurück zum Zitat Stringfellow, S.B., Gupta, S., Shaw, C., Alcock, J.R., Whatmore, R.W.: Electrical conductivity control in uranium-doped PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 pyroelectric ceramics. J. Eur. Ceram. Soc. 22(4), 573–578 (2002)CrossRef Stringfellow, S.B., Gupta, S., Shaw, C., Alcock, J.R., Whatmore, R.W.: Electrical conductivity control in uranium-doped PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 pyroelectric ceramics. J. Eur. Ceram. Soc. 22(4), 573–578 (2002)CrossRef
25.
Zurück zum Zitat Whatmore, R.W., Bell, A.J.: Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system. Ferroelectrics 35(1), 155–160 (1981)CrossRef Whatmore, R.W., Bell, A.J.: Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system. Ferroelectrics 35(1), 155–160 (1981)CrossRef
26.
Zurück zum Zitat Herbert, J.M.: Ferroelectric transducers and sensors. In: Electrocomponent Science Monographs. Gordon and Breach Science Publishers, New York (1982) Herbert, J.M.: Ferroelectric transducers and sensors. In: Electrocomponent Science Monographs. Gordon and Breach Science Publishers, New York (1982)
27.
Zurück zum Zitat Kumar, A., Periman, M.M.: Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films II. J. Phys. D. Appl. Phys. 26(3), 469 (1993)CrossRef Kumar, A., Periman, M.M.: Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films II. J. Phys. D. Appl. Phys. 26(3), 469 (1993)CrossRef
28.
Zurück zum Zitat Marshall, J.M., Zhang, Q., Whatmore, R.W.: Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516(15), 4679–4684 (2008) Marshall, J.M., Zhang, Q., Whatmore, R.W.: Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516(15), 4679–4684 (2008)
29.
Zurück zum Zitat Lang, S.B., Steckel, F.: Method for the measurement of the pyroelectric coefficient, dc dielectric constant, and volume resistivity of a polar material. Rev. Sci. Instrum. 36(7), 929 (1965)CrossRef Lang, S.B., Steckel, F.: Method for the measurement of the pyroelectric coefficient, dc dielectric constant, and volume resistivity of a polar material. Rev. Sci. Instrum. 36(7), 929 (1965)CrossRef
30.
Zurück zum Zitat Glass, A.M.: Investigation of the electrical properties of sr1xbaxnb2o6 with special reference to pyroelectric detection. J. Appl. Phys. 40(12), 4699 (1969)CrossRef Glass, A.M.: Investigation of the electrical properties of sr1xbaxnb2o6 with special reference to pyroelectric detection. J. Appl. Phys. 40(12), 4699 (1969)CrossRef
31.
Zurück zum Zitat Byer, R.L., Roundy, C.B.: Pyroelectric coefficient direct measurement technique and application to a nsec response time detector. Ferroelectrics 3(1), 333–338 (1972)CrossRef Byer, R.L., Roundy, C.B.: Pyroelectric coefficient direct measurement technique and application to a nsec response time detector. Ferroelectrics 3(1), 333–338 (1972)CrossRef
32.
Zurück zum Zitat Whatmore, R.W., Molter, O., Shaw, C.P.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)CrossRef Whatmore, R.W., Molter, O., Shaw, C.P.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)CrossRef
33.
Zurück zum Zitat Molter, O.: Development of new pyroelectric ceramics for thermal imaging applications/Olivier Molter. Dissertation, Ph.D. thesis (M.Sc.), School of Industrial and Manufacturing Science, Advanced Materials, Cranfield University (2001) Molter, O.: Development of new pyroelectric ceramics for thermal imaging applications/Olivier Molter. Dissertation, Ph.D. thesis (M.Sc.), School of Industrial and Manufacturing Science, Advanced Materials, Cranfield University (2001)
34.
Zurück zum Zitat Whatmore, R.W., Molter, O., Shaw, C.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)CrossRef Whatmore, R.W., Molter, O., Shaw, C.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)CrossRef
35.
Zurück zum Zitat Sharp, E.J., Garn, L.E.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part ii: experiment. J. Appl. Phys. 53(12), 8980 (1982)CrossRef Sharp, E.J., Garn, L.E.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part ii: experiment. J. Appl. Phys. 53(12), 8980 (1982)CrossRef
36.
Zurück zum Zitat Garn, L.E., Sharp, E.J.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part i: theory. J. Appl. Phys. 53(12), 8974 (1982)CrossRef Garn, L.E., Sharp, E.J.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part i: theory. J. Appl. Phys. 53(12), 8974 (1982)CrossRef
37.
Zurück zum Zitat Chynoweth, A.G.: Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 27(1), 78 (1956)CrossRef Chynoweth, A.G.: Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 27(1), 78 (1956)CrossRef
38.
Zurück zum Zitat Shaulov, A.: Improved figure of merit in obliquely cut pyroelectric crystals. Appl. Phys. Lett. 39(2), 180 (1981)CrossRef Shaulov, A.: Improved figure of merit in obliquely cut pyroelectric crystals. Appl. Phys. Lett. 39(2), 180 (1981)CrossRef
39.
Zurück zum Zitat Lang, S.B.: Laser intensity modulation method: a technique for determination of spatial distributions of polarization and space charge in ferroelectric materials. Ferroelectrics 78(1), 129–136 (1988)CrossRef Lang, S.B.: Laser intensity modulation method: a technique for determination of spatial distributions of polarization and space charge in ferroelectric materials. Ferroelectrics 78(1), 129–136 (1988)CrossRef
40.
Zurück zum Zitat Lang, S.: Technique for the measurement of thermal diffusivity based on the laser intensity modulation method (LIMM). Ferroelectrics 93(1), 87–93 (1989)CrossRef Lang, S.: Technique for the measurement of thermal diffusivity based on the laser intensity modulation method (LIMM). Ferroelectrics 93(1), 87–93 (1989)CrossRef
41.
Zurück zum Zitat Stewart, M., Cain, M.G.: Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM). J. Am. Ceram. Soc. 91(7), 2176–2181 (2008) Stewart, M., Cain, M.G.: Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM). J. Am. Ceram. Soc. 91(7), 2176–2181 (2008)
42.
Zurück zum Zitat Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)CrossRef Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)CrossRef
Metadaten
Titel
Characterisation of Pyroelectric Materials
verfasst von
Roger Whatmore
Copyright-Jahr
2014
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-1-4020-9311-1_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.