Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Continuous Time Markov Chain Models for Chemical Reaction Networks

verfasst von : David F. Anderson, Thomas G. Kurtz

Erschienen in: Design and Analysis of Biomolecular Circuits

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. This chapter is devoted to the mathematical study of such stochastic models. We begin by developing much of the mathematical machinery we need to describe the stochastic models we are most interested in. We show how one can represent counting processes of the type we need in terms of Poisson processes. This random time-change representation gives a stochastic equation for continuous-time Markov chain models. We include a discussion on the relationship between this stochastic equation and the corresponding martingale problem and Kolmogorov forward (master) equation. Next, we exploit the representation of the stochastic equation for chemical reaction networks and, under what we will refer to as the classical scaling, show how to derive the deterministic law of mass action from the Markov chain model. We also review the diffusion, or Langevin, approximation, include a discussion of first order reaction networks, and present a large class of networks, those that are weakly reversible and have a deficiency of zero, that induce product-form stationary distributions. Finally, we discuss models in which the numbers of molecules and/or the reaction rate constants of the system vary over several orders of magnitude. We show that one consequence of this wide variation in scales is that different subsystems may evolve on different time scales and this time-scale variation can be exploited to identify reduced models that capture the behavior of parts of the system. We will discuss systematic ways of identifying the different time scales and deriving the reduced models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anderson DF (2007) A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J Chem Phys 127(21):214107CrossRef Anderson DF (2007) A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J Chem Phys 127(21):214107CrossRef
2.
Zurück zum Zitat Anderson DF, Craciun G, Kurtz TG (2010) Product-form stationary distributions for deficiency zero chemical reaction networks. Bull Math Biol 72(8):1947–1970MathSciNetMATHCrossRef Anderson DF, Craciun G, Kurtz TG (2010) Product-form stationary distributions for deficiency zero chemical reaction networks. Bull Math Biol 72(8):1947–1970MathSciNetMATHCrossRef
3.
Zurück zum Zitat Athreya KB, Ney PE (1972) Branching processes. Springer-Verlag, New York. Die Grundlehren der mathematischen Wissenschaften, Band 196 Athreya KB, Ney PE (1972) Branching processes. Springer-Verlag, New York. Die Grundlehren der mathematischen Wissenschaften, Band 196
4.
Zurück zum Zitat Ball K, Kurtz TG, Popovic L, Rempala G (2006) Asymptotic analysis of multiscale approximations to reaction networks. Ann Appl Probab 16(4):1925–1961MathSciNetMATHCrossRef Ball K, Kurtz TG, Popovic L, Rempala G (2006) Asymptotic analysis of multiscale approximations to reaction networks. Ann Appl Probab 16(4):1925–1961MathSciNetMATHCrossRef
5.
Zurück zum Zitat Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS Comp Biol 2:1017–1030CrossRef Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS Comp Biol 2:1017–1030CrossRef
6.
Zurück zum Zitat Bartholomay AF (1958) Stochastic models for chemical reactions. I. Theory of the unimolecular reaction process. Bull Math Biophys 20:175–190MathSciNet Bartholomay AF (1958) Stochastic models for chemical reactions. I. Theory of the unimolecular reaction process. Bull Math Biophys 20:175–190MathSciNet
7.
Zurück zum Zitat Bartholomay AF (1959) Stochastic models for chemical reactions. II. The unimolecular rate constant. Bull Math Biophys 21:363–373MathSciNet Bartholomay AF (1959) Stochastic models for chemical reactions. II. The unimolecular rate constant. Bull Math Biophys 21:363–373MathSciNet
8.
Zurück zum Zitat Bratsun D, Volfson D, Tsimring LS, Hasty J (2005) Delay-induced stochastic oscillations in gene regulation. PNAS 102:14593–14598CrossRef Bratsun D, Volfson D, Tsimring LS, Hasty J (2005) Delay-induced stochastic oscillations in gene regulation. PNAS 102:14593–14598CrossRef
9.
Zurück zum Zitat Darden T (1979) A pseudo-steady state approximation for stochastic chemical kinetics. Rocky Mt J Math 9(1):51–71. Conference on Deterministic Differential Equations and Stochastic Processes Models for Biological Systems, San Cristobal, N.M., 1977 Darden T (1979) A pseudo-steady state approximation for stochastic chemical kinetics. Rocky Mt J Math 9(1):51–71. Conference on Deterministic Differential Equations and Stochastic Processes Models for Biological Systems, San Cristobal, N.M., 1977
10.
Zurück zum Zitat Darden TA (1982) Enzyme kinetics: stochastic vs. deterministic models. In: Reichl LE, Schieve WC (eds) Instabilities, bifurcations, and fluctuations in chemical systems (Austin, Tex., 1980). University of Texas Press, Austin, TX, pp 248–272 Darden TA (1982) Enzyme kinetics: stochastic vs. deterministic models. In: Reichl LE, Schieve WC (eds) Instabilities, bifurcations, and fluctuations in chemical systems (Austin, Tex., 1980). University of Texas Press, Austin, TX, pp 248–272
11.
Zurück zum Zitat Davis MHA (1993) Markov models and optimization. Monographs on statistics and applied probability, vol 49. Chapman & Hall, London Davis MHA (1993) Markov models and optimization. Monographs on statistics and applied probability, vol 49. Chapman & Hall, London
12.
Zurück zum Zitat Delbrück M (1940) Statistical fluctuations in autocatalytic reactions. J Chem Phys 8(1): 120–124CrossRef Delbrück M (1940) Statistical fluctuations in autocatalytic reactions. J Chem Phys 8(1): 120–124CrossRef
13.
Zurück zum Zitat Donsker MD (1951) An invariance principle for certain probability limit theorems. Mem Amer Math Soc 1951(6):12MathSciNet Donsker MD (1951) An invariance principle for certain probability limit theorems. Mem Amer Math Soc 1951(6):12MathSciNet
14.
Zurück zum Zitat Ethier SN, Kurtz TG (1986) Markov processes. Wiley series in probability and mathematical statistics: probability and mathematical statistics. John Wiley & Sons Inc, New York. Characterization and convergence Ethier SN, Kurtz TG (1986) Markov processes. Wiley series in probability and mathematical statistics: probability and mathematical statistics. John Wiley & Sons Inc, New York. Characterization and convergence
15.
Zurück zum Zitat Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors i. the deficiency zero and deficiency one theorems. Chem Engr Sci 42(10):2229–2268 Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors i. the deficiency zero and deficiency one theorems. Chem Engr Sci 42(10):2229–2268
16.
Zurück zum Zitat Feinberg M (1988) Chemical reaction network structure and the stability of complex isothermal reactors ii. multiple steady states for networks of deficiency one. Chem Engr Sci 43(1):1–25 Feinberg M (1988) Chemical reaction network structure and the stability of complex isothermal reactors ii. multiple steady states for networks of deficiency one. Chem Engr Sci 43(1):1–25
17.
Zurück zum Zitat Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67(5):901–946MathSciNetCrossRef Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67(5):901–946MathSciNetCrossRef
18.
Zurück zum Zitat Gibson MA, Bruck J (2000) Efficient exact simulation of chemical systems with many species and many channels. J Phys Chem A 104(9):1876–1889CrossRef Gibson MA, Bruck J (2000) Efficient exact simulation of chemical systems with many species and many channels. J Phys Chem A 104(9):1876–1889CrossRef
19.
Zurück zum Zitat Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434MathSciNetCrossRef Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434MathSciNetCrossRef
20.
Zurück zum Zitat Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–61CrossRef Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–61CrossRef
21.
Zurück zum Zitat Gillespie DT (1992). A rigorous derivation of the chemical master equation. Physica A 188:404–425CrossRef Gillespie DT (1992). A rigorous derivation of the chemical master equation. Physica A 188:404–425CrossRef
22.
Zurück zum Zitat Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733CrossRef Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733CrossRef
23.
Zurück zum Zitat Jacod J (1974/75) Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z Wahrscheinlichkeit und Verw Gebiete 31:235–253 Jacod J (1974/75) Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z Wahrscheinlichkeit und Verw Gebiete 31:235–253
24.
Zurück zum Zitat Kang HW (2009) The multiple scaling approximation in the heat shock model of e. coli. In Preparation Kang HW (2009) The multiple scaling approximation in the heat shock model of e. coli. In Preparation
25.
Zurück zum Zitat Kang HW, Kurtz TG (2010) Separation of time-scales and model reduction for stochastic reaction networks. Ann Appl Probab (to appear) Kang HW, Kurtz TG (2010) Separation of time-scales and model reduction for stochastic reaction networks. Ann Appl Probab (to appear)
26.
Zurück zum Zitat Kang HW, Kurtz TG, Popovic L (2010) Diffusion approximations for multiscale chemical reaction models. In Preparation Kang HW, Kurtz TG, Popovic L (2010) Diffusion approximations for multiscale chemical reaction models. In Preparation
27.
Zurück zum Zitat Kelly FP (1979) Reversibility and stochastic networks. Wiley series in probability and mathematical statistics. John Wiley & Sons Ltd, ChichesterMATH Kelly FP (1979) Reversibility and stochastic networks. Wiley series in probability and mathematical statistics. John Wiley & Sons Ltd, ChichesterMATH
28.
Zurück zum Zitat Kolmogorov AN (1956) Foundations of the theory of probability. Chelsea Publishing Co, New York. Translation edited by Nathan Morrison, with an added bibliography by A. T. Bharucha-Reid Kolmogorov AN (1956) Foundations of the theory of probability. Chelsea Publishing Co, New York. Translation edited by Nathan Morrison, with an added bibliography by A. T. Bharucha-Reid
29.
Zurück zum Zitat Komlós J, Major P, Tusnády G (1975) An approximation of partial sums of independent RV’s and the sample DF. I. Z Wahrscheinlichkeit und Verw Gebiete 32:111–131MATHCrossRef Komlós J, Major P, Tusnády G (1975) An approximation of partial sums of independent RV’s and the sample DF. I. Z Wahrscheinlichkeit und Verw Gebiete 32:111–131MATHCrossRef
30.
Zurück zum Zitat Komlós J, Major P, Tusnády G (1976) An approximation of partial sums of independent RV’s, and the sample DF. II. Z Wahrscheinlichkeit und Verw Gebiete 34(1):33–58MATHCrossRef Komlós J, Major P, Tusnády G (1976) An approximation of partial sums of independent RV’s, and the sample DF. II. Z Wahrscheinlichkeit und Verw Gebiete 34(1):33–58MATHCrossRef
31.
Zurück zum Zitat Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Probab 7:49–58MathSciNetMATHCrossRef Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Probab 7:49–58MathSciNetMATHCrossRef
32.
Zurück zum Zitat Kurtz TG (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab 8:344–356MathSciNetMATHCrossRef Kurtz TG (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab 8:344–356MathSciNetMATHCrossRef
33.
Zurück zum Zitat Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J Chem Phys 57(7):2976–2978CrossRef Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J Chem Phys 57(7):2976–2978CrossRef
34.
Zurück zum Zitat Kurtz TG (1977/78) Strong approximation theorems for density dependent Markov chains. Stoch Proc Appl 6(3):223–240 Kurtz TG (1977/78) Strong approximation theorems for density dependent Markov chains. Stoch Proc Appl 6(3):223–240
36.
Zurück zum Zitat Kurtz TG (2007) The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron J Probab 12:951–965MathSciNetMATH Kurtz TG (2007) The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron J Probab 12:951–965MathSciNetMATH
37.
Zurück zum Zitat Kurtz TG (2010) Equivalence of stochastic equations and martingale problems. In: Dan Crisan (ed) Stochastic analysis 2010. Springer, Heidelberg Kurtz TG (2010) Equivalence of stochastic equations and martingale problems. In: Dan Crisan (ed) Stochastic analysis 2010. Springer, Heidelberg
38.
Zurück zum Zitat E W, Liu D, Vanden-Eijnden E (2005) Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J Chem Phys 123(19):194107 E W, Liu D, Vanden-Eijnden E (2005) Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J Chem Phys 123(19):194107
40.
Zurück zum Zitat Meyer PA (1971) Démonstration simplifiée d’un théorème de Knight. In: Dellacherie C, Meyer PA (eds) Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970). Lecture Notes in Math, vol 191. Springer, Berlin, pp 191–195 Meyer PA (1971) Démonstration simplifiée d’un théorème de Knight. In: Dellacherie C, Meyer PA (eds) Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970). Lecture Notes in Math, vol 191. Springer, Berlin, pp 191–195
41.
Zurück zum Zitat Ross S (1984) A first course in probability, 2ed edn Macmillan Co, New YorkMATH Ross S (1984) A first course in probability, 2ed edn Macmillan Co, New YorkMATH
Metadaten
Titel
Continuous Time Markov Chain Models for Chemical Reaction Networks
verfasst von
David F. Anderson
Thomas G. Kurtz
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6766-4_1