Skip to main content

2012 | OriginalPaper | Buchkapitel

10. Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites

verfasst von : Sergio Bocchini, Giovanni Camino

Erschienen in: Environmental Silicate Nano-Biocomposites

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In these years we are witnessing the growth of the biopolymers durable application markets such as buildings, transportation, electronic equipments etc. Thus, the fire retardancy issue is becoming important and it is expected that in the next future more and more research will be devoted to the subject. So far, a limited number of papers reports on flame retardant properties of biopolyesters and they are mainly on polylactide. Most of the papers published on this topic regarding biopolyesters, concern polyesters fire retarded by traditional fire retardants developed for oil sourced polymers, especially polyesters such as polyethylene terephthalate or other polymers such as polycarbonate. The recently developed use of nanoclays to fire retard polymers has proved to be beneficial also for polyesters from renewable resources. This chapter reviews the studies published on thermal and fire behaviour of polylactide nanocomposites based on clays. Indeed, PLA is the most important commercial plastic from renewable resources (RRP) polyester for which durable applications are being developed and fire retardant aspects are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging biobased plastics (PROBIP 2009). Commissioned by European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics. Group Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University Utrecht, the Netherlands, June 2009. Report No: NWS-E-2009-32 Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging biobased plastics (PROBIP 2009). Commissioned by European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics. Group Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University Utrecht, the Netherlands, June 2009. Report No: NWS-E-2009-32
2.
Zurück zum Zitat Horrocks AR, Price D (2001) Fire retardant materials. CRC Press, BostonCrossRef Horrocks AR, Price D (2001) Fire retardant materials. CRC Press, BostonCrossRef
3.
Zurück zum Zitat Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696CrossRef Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696CrossRef
4.
Zurück zum Zitat Zanetti M, Camino G, Mülhaupt R (2001) Combustion behaviour of EVA/fluorohectorite nanocomposites. Polym Degrad Stab 74(3):413–417CrossRef Zanetti M, Camino G, Mülhaupt R (2001) Combustion behaviour of EVA/fluorohectorite nanocomposites. Polym Degrad Stab 74(3):413–417CrossRef
5.
Zurück zum Zitat Brindely GW, Brown G (1980) Crystal structure of clay minerals and their X-ray identification. Mineralogical Society, London Brindely GW, Brown G (1980) Crystal structure of clay minerals and their X-ray identification. Mineralogical Society, London
6.
Zurück zum Zitat Solomon DH, Hawthorne DG (1991) Chemistry of pigments and fillers. Krieger, Malabar Solomon DH, Hawthorne DG (1991) Chemistry of pigments and fillers. Krieger, Malabar
7.
Zurück zum Zitat Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364CrossRef Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364CrossRef
8.
Zurück zum Zitat Sherman JD (1996) Synthetic zeolites and other microporous oxide molecular sieves. Proc Natl Acad Sci USA 96:3471–3478CrossRef Sherman JD (1996) Synthetic zeolites and other microporous oxide molecular sieves. Proc Natl Acad Sci USA 96:3471–3478CrossRef
9.
Zurück zum Zitat Bocchini S, Fukushima K, Di Blasio A, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and Polylactic acid-based nanocomposites photooxidation. Biomacromolecules 11(8):2919–2926CrossRef Bocchini S, Fukushima K, Di Blasio A, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and Polylactic acid-based nanocomposites photooxidation. Biomacromolecules 11(8):2919–2926CrossRef
10.
Zurück zum Zitat Xie W, Gao Z, Pan W, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990CrossRef Xie W, Gao Z, Pan W, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990CrossRef
11.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Figure 1 in Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Figure 1 in
12.
Zurück zum Zitat Akelah A, Moet A (1996) Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31(13):3589–3596 Akelah A, Moet A (1996) Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31(13):3589–3596
13.
Zurück zum Zitat Agag T, Takeichi T (2000) Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer 41(19):7083–7090CrossRef Agag T, Takeichi T (2000) Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer 41(19):7083–7090CrossRef
14.
Zurück zum Zitat Chen TK, Tien YI, Wie KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41(4):1345–1353CrossRef Chen TK, Tien YI, Wie KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41(4):1345–1353CrossRef
15.
Zurück zum Zitat Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42(3):1083–1094CrossRef Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42(3):1083–1094CrossRef
16.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 8 in Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 8 in
17.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436CrossRef Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436CrossRef
18.
Zurück zum Zitat Davis RD, Gilman JW, Sutto TE, Callahan JH, Trulove PC, De Long HC (2004) Improved thermal stability of organically modified layered silicates clays. Clay Miner 52(2):171–179CrossRef Davis RD, Gilman JW, Sutto TE, Callahan JH, Trulove PC, De Long HC (2004) Improved thermal stability of organically modified layered silicates clays. Clay Miner 52(2):171–179CrossRef
19.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Ristori V, Sorrentino L, Iannace S, Bian X, Guardasole M, Vaccaro S (2006) Effect of organoclay impurities on mechanical properties of EVA-layered silicate nanocomposites e-Polymers n°14 Bellucci F, Camino G, Frache A, Ristori V, Sorrentino L, Iannace S, Bian X, Guardasole M, Vaccaro S (2006) Effect of organoclay impurities on mechanical properties of EVA-layered silicate nanocomposites e-Polymers n°14
20.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 9 Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 9
21.
Zurück zum Zitat Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Scheme 1 in Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Scheme 1 in
22.
Zurück zum Zitat Park SJ, Seo DI, Lee JR (2002) Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Coll InterfSci 251(1):160–165CrossRef Park SJ, Seo DI, Lee JR (2002) Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Coll InterfSci 251(1):160–165CrossRef
23.
Zurück zum Zitat Gilman JW, Kashiwagi T (1997) Nanocomposites: a revolutionary new flame retardant approach. SAMPE J 33:40–46 Gilman JW, Kashiwagi T (1997) Nanocomposites: a revolutionary new flame retardant approach. SAMPE J 33:40–46
24.
Zurück zum Zitat Kashiwagi T, Gilman JW, Nyden MR, Lomakin SM (1998) Polymer combustion and new flame retardants. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge Kashiwagi T, Gilman JW, Nyden MR, Lomakin SM (1998) Polymer combustion and new flame retardants. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge
25.
Zurück zum Zitat Gilman JW, Kashiwagi T, Giannelis EP, Manias E, Lomakin S, Lichtenhan JD, Jones P (1998) Nanocomposites: radiative gasification and vinyl polymer flammability. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge Gilman JW, Kashiwagi T, Giannelis EP, Manias E, Lomakin S, Lichtenhan JD, Jones P (1998) Nanocomposites: radiative gasification and vinyl polymer flammability. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge
26.
Zurück zum Zitat Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45(3):881–891CrossRef Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45(3):881–891CrossRef
27.
Zurück zum Zitat Lewin M (2003) Some comments on the modes of action of nanocomposites in the flame retardancy of polymers. Fire Mater 27(1):1–7CrossRef Lewin M (2003) Some comments on the modes of action of nanocomposites in the flame retardancy of polymers. Fire Mater 27(1):1–7CrossRef
28.
Zurück zum Zitat Pastore HO, Frache A, Boccaleri E, Marchese L, Camino G (2004) Heat induced structure modifications in polymer-layered silicate nanocomposites. Macromol Mater Eng 289(9):783–786CrossRef Pastore HO, Frache A, Boccaleri E, Marchese L, Camino G (2004) Heat induced structure modifications in polymer-layered silicate nanocomposites. Macromol Mater Eng 289(9):783–786CrossRef
29.
Zurück zum Zitat Wang J, Du J, Zhu J, Wilkie CA (2002) An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polym Degrad Stab 77(2):249–252CrossRef Wang J, Du J, Zhu J, Wilkie CA (2002) An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polym Degrad Stab 77(2):249–252CrossRef
30.
Zurück zum Zitat Tang Y, Lewin M, Pearce EM (2006) Effects of annealing on the migration behavior of PA6/Clay nanocomposites. Macromol Rapid Comm 27(18):1545–1549CrossRef Tang Y, Lewin M, Pearce EM (2006) Effects of annealing on the migration behavior of PA6/Clay nanocomposites. Macromol Rapid Comm 27(18):1545–1549CrossRef
31.
Zurück zum Zitat Hao J, Lewin M, Wilkie CA, Wang J (2006) Additional evidence for the migration of clay upon heating of clay/polypropylene nanocomposites from X-ray photoelectron spectroscopy (XPS). Polym Degrad Stab 91(10):2482–2485CrossRef Hao J, Lewin M, Wilkie CA, Wang J (2006) Additional evidence for the migration of clay upon heating of clay/polypropylene nanocomposites from X-ray photoelectron spectroscopy (XPS). Polym Degrad Stab 91(10):2482–2485CrossRef
32.
Zurück zum Zitat Tang Y, Lewin M (2007) Maleated polypropylene OMMT nanocomposite: annealing, structural changes, exfoliated and migration. Polym Degrad Stab 92(1):53–60CrossRef Tang Y, Lewin M (2007) Maleated polypropylene OMMT nanocomposite: annealing, structural changes, exfoliated and migration. Polym Degrad Stab 92(1):53–60CrossRef
33.
Zurück zum Zitat Lewin M, Tang Y (2008) Oxidation-migration cycle in polypropylene-based nanocomposites. Macromolecules 41(1):13–17CrossRef Lewin M, Tang Y (2008) Oxidation-migration cycle in polypropylene-based nanocomposites. Macromolecules 41(1):13–17CrossRef
34.
Zurück zum Zitat Frache A, Monticelli O, Ceccia S, Brucellaria A, Casale A (2008) Preparation of nanocomposites based on PP and PA6 by direct injection moulding. Polym Eng Sci 48(12):2373–2381CrossRef Frache A, Monticelli O, Ceccia S, Brucellaria A, Casale A (2008) Preparation of nanocomposites based on PP and PA6 by direct injection moulding. Polym Eng Sci 48(12):2373–2381CrossRef
35.
Zurück zum Zitat Ceccia S, Bellucci F, Monticelli O, Frache A, Traverso G, Casale A (2010) The effect of annealing conditions on the intercalation and exfoliation of layered silicates in polymer nanocomposites. J Polym Sci Pol Phys 48(23):2476–2483CrossRef Ceccia S, Bellucci F, Monticelli O, Frache A, Traverso G, Casale A (2010) The effect of annealing conditions on the intercalation and exfoliation of layered silicates in polymer nanocomposites. J Polym Sci Pol Phys 48(23):2476–2483CrossRef
36.
Zurück zum Zitat Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 1 polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11(3):267–285CrossRef Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 1 polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11(3):267–285CrossRef
37.
Zurück zum Zitat Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 2 polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab 11(4):309–326CrossRef Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 2 polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab 11(4):309–326CrossRef
38.
Zurück zum Zitat Wachsen O, Reachert KH, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters—III studies on the mechanisms of thermal degradation of oligo-L-lactide using SEC LACCC and MALDI-TOF-MS. Polym Degrad Stab 55(2):225–231CrossRef Wachsen O, Reachert KH, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters—III studies on the mechanisms of thermal degradation of oligo-L-lactide using SEC LACCC and MALDI-TOF-MS. Polym Degrad Stab 55(2):225–231CrossRef
39.
Zurück zum Zitat Fan YJ, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab 79(3):547–562CrossRef Fan YJ, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab 79(3):547–562CrossRef
40.
Zurück zum Zitat Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(D, L-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91(12):3259–3265CrossRef Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(D, L-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91(12):3259–3265CrossRef
41.
Zurück zum Zitat Kopinke FD, Mackenzie K (1997) Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(b-hydroxybutyric acid). J Anal Appl Pyrol 40–41:43–53CrossRef Kopinke FD, Mackenzie K (1997) Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(b-hydroxybutyric acid). J Anal Appl Pyrol 40–41:43–53CrossRef
42.
Zurück zum Zitat Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters—II Poly(lactic acid). Polym Degrad Stab 53(3):329–342CrossRef Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters—II Poly(lactic acid). Polym Degrad Stab 53(3):329–342CrossRef
43.
Zurück zum Zitat Gogolewski S, Jovanovic M, Perren S, Dillon J, Hughes M (1993) The effect of melt-processing on the degradation of selected polyhydroxyacids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym Degrad Stab 40(3):313–322CrossRef Gogolewski S, Jovanovic M, Perren S, Dillon J, Hughes M (1993) The effect of melt-processing on the degradation of selected polyhydroxyacids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym Degrad Stab 40(3):313–322CrossRef
44.
Zurück zum Zitat Jamshidi K, Hyon S, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29(12):2229–2234CrossRef Jamshidi K, Hyon S, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29(12):2229–2234CrossRef
45.
Zurück zum Zitat Cam D, Marucci M (1997) Influence of residual monomers and metals on poly (L-lactide) thermal stability. Polymer 38(8):1879–1884CrossRef Cam D, Marucci M (1997) Influence of residual monomers and metals on poly (L-lactide) thermal stability. Polymer 38(8):1879–1884CrossRef
46.
Zurück zum Zitat Bensons SW, Nangia PS (1979) Some unresolved problems in oxidation and combustion. Accounts Chem Res 12(7):223–228CrossRef Bensons SW, Nangia PS (1979) Some unresolved problems in oxidation and combustion. Accounts Chem Res 12(7):223–228CrossRef
47.
Zurück zum Zitat Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part I: activation energy of thermal degradation in air. Coll Polym Sci 260(3):308–311CrossRef Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part I: activation energy of thermal degradation in air. Coll Polym Sci 260(3):308–311CrossRef
48.
Zurück zum Zitat Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part II: molecular weight and electronic spectra during isothermal heating. Coll Polym Sci 260(5):514–517CrossRef Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part II: molecular weight and electronic spectra during isothermal heating. Coll Polym Sci 260(5):514–517CrossRef
49.
Zurück zum Zitat Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506CrossRef Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506CrossRef
50.
Zurück zum Zitat Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44(2):443–450CrossRef Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44(2):443–450CrossRef
51.
Zurück zum Zitat Marras S, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polym J 43(6):2191–2206CrossRef Marras S, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polym J 43(6):2191–2206CrossRef
52.
Zurück zum Zitat Chen G, Yoon J (2005) Morphology and thermal properties of poly(L-lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J Polym Sci Polym Phys 43(5):478–487CrossRef Chen G, Yoon J (2005) Morphology and thermal properties of poly(L-lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J Polym Sci Polym Phys 43(5):478–487CrossRef
53.
Zurück zum Zitat Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degr Stab 94(3):327–338CrossRef Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degr Stab 94(3):327–338CrossRef
54.
Zurück zum Zitat Okamoto K, Toshima K, Matsumura S (2005) Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling. Macromol Biosci 5(9):813–820CrossRef Okamoto K, Toshima K, Matsumura S (2005) Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling. Macromol Biosci 5(9):813–820CrossRef
55.
Zurück zum Zitat Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Poly Degr Stab 95(6):1063–1076CrossRef Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Poly Degr Stab 95(6):1063–1076CrossRef
56.
Zurück zum Zitat Chang J, An Y, Sur G (2003) Poly(lactic acid) nanocomposites with various organoclays I Thermomechanical properties, morphology and gas permeability. J Polym Sci Polym Phys 41(1):94–103CrossRef Chang J, An Y, Sur G (2003) Poly(lactic acid) nanocomposites with various organoclays I Thermomechanical properties, morphology and gas permeability. J Polym Sci Polym Phys 41(1):94–103CrossRef
57.
Zurück zum Zitat Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45(2):191–198CrossRef Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45(2):191–198CrossRef
59.
60.
Zurück zum Zitat Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300CrossRef Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300CrossRef
61.
Zurück zum Zitat Bartholmai MM, Schartel B (2004) Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 15(7):355–364CrossRef Bartholmai MM, Schartel B (2004) Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 15(7):355–364CrossRef
62.
Zurück zum Zitat Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1(9):1413–1422CrossRef Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1(9):1413–1422CrossRef
63.
Zurück zum Zitat Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mat 14(2):881–887CrossRef Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mat 14(2):881–887CrossRef
64.
Zurück zum Zitat Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Flammability properties of polymer—layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mat 12(7):1866–1873CrossRef Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Flammability properties of polymer—layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mat 12(7):1866–1873CrossRef
65.
Zurück zum Zitat Bocchini S, Frache A, Camino G, Costantini E, Ferrara G, Fatinel F (2006) Poly-1-Butene/Clay nanocomposite effect of compatibilisers on thermal and fire retardant properties. Polym Adv Technol 17(4):246–254CrossRef Bocchini S, Frache A, Camino G, Costantini E, Ferrara G, Fatinel F (2006) Poly-1-Butene/Clay nanocomposite effect of compatibilisers on thermal and fire retardant properties. Polym Adv Technol 17(4):246–254CrossRef
66.
Zurück zum Zitat Bourbigot S, Fontaine G, Bellayer S, Delobel R (2008) Processing and nanodispersion: A quantitative approach for polylactide nanocomposites. Polym Test 27(1):2–10CrossRef Bourbigot S, Fontaine G, Bellayer S, Delobel R (2008) Processing and nanodispersion: A quantitative approach for polylactide nanocomposites. Polym Test 27(1):2–10CrossRef
67.
Zurück zum Zitat Bourbigot S, Fontaine G, Duquesne S, Delobel R (2008) PLA nanocomposites: quantification of clay nanodispersion and reaction to fire. Int J Nanotechnol 5(6/7/8):683–692 Bourbigot S, Fontaine G, Duquesne S, Delobel R (2008) PLA nanocomposites: quantification of clay nanodispersion and reaction to fire. Int J Nanotechnol 5(6/7/8):683–692
68.
Zurück zum Zitat Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381CrossRef Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381CrossRef
69.
Zurück zum Zitat Solarski S, Mahjoubi F, Ferreira M, Devaux E, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, Da Silva FA, Alexandre M, Degee P, Dubois P (2007) Plasticized Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci 42(13):5105–5117CrossRef Solarski S, Mahjoubi F, Ferreira M, Devaux E, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, Da Silva FA, Alexandre M, Degee P, Dubois P (2007) Plasticized Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci 42(13):5105–5117CrossRef
70.
Zurück zum Zitat Murariu M, Da Silva Ferreira A, Bonnaud L, Dubois P (2009) Calcium sulfate as high-performance filler for polylactide (PLA) or how to recycle gypsum as by-product of lactic acid fermentation process. Compos Interf 16(2–3):65–84CrossRef Murariu M, Da Silva Ferreira A, Bonnaud L, Dubois P (2009) Calcium sulfate as high-performance filler for polylactide (PLA) or how to recycle gypsum as by-product of lactic acid fermentation process. Compos Interf 16(2–3):65–84CrossRef
71.
Zurück zum Zitat Fontaine G, Bourbigot S (2009) Intumescent polylactide: A nonflammable material. J Appl Polym Sci 113(6):3860–3865CrossRef Fontaine G, Bourbigot S (2009) Intumescent polylactide: A nonflammable material. J Appl Polym Sci 113(6):3860–3865CrossRef
72.
Zurück zum Zitat Bourbigot S, Le Bras M, Delobel R, Decressain R, Amoureux JP (1996) Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. J Chem Soc Faraday T 92(1):149–158CrossRef Bourbigot S, Le Bras M, Delobel R, Decressain R, Amoureux JP (1996) Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. J Chem Soc Faraday T 92(1):149–158CrossRef
73.
Zurück zum Zitat Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24(4):201–208CrossRef Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24(4):201–208CrossRef
Metadaten
Titel
Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites
verfasst von
Sergio Bocchini
Giovanni Camino
Copyright-Jahr
2012
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4108-2_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.