Skip to main content

2019 | OriginalPaper | Buchkapitel

91. Machine-Learning-Based Model for Supporting Energy Performance Benchmarking for Office Buildings

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Buildings are dominant contributors of global energy consumption. Enhancing building energy efficiency has long been recognized as an important way to achieve energy saving goals and sustainability targets. In response, a body of building energy performance benchmarking models and tools have been proposed during the past decades. The degree of similarity between the compared buildings is the core of the benchmarking process. However, existing benchmarking tools mainly classify buildings only based on building use types, instead of fully considering a wider range of impacting factors. To address this gap, this paper proposes a machine-learning (ML)-based model for classifying buildings—based on building characteristics, occupant behaviors, and geographical and climate features—into three energy-consumption levels: low, medium, and high. Support vector regression models are then fitted to define the predicted energy consumption for benchmarking. The proposed ML-based building energy consumption prediction model was tested on the office buildings in the commercial building energy consumption survey (CBECS) dataset. Principal component analysis (PCA) was used for data dimensionality reduction and feature extraction. Different ML algorithms were tested and compared, including Naïve Bayes (NB), support vector machines (SVM), decision trees (DT), and random forests (RF). The classification algorithms were evaluated in terms of precision and recall; the regression models were evaluated in terms of root mean square error; and the energy consumption prediction results were further compared with the prediction results by EnergyStar. The performance results indicate that, compared with EnergyStar, the proposed model can reduce the prediction error by 13%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klepeis, et al.: The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11(3), 231 (2001)CrossRef Klepeis, et al.: The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11(3), 231 (2001)CrossRef
2.
Zurück zum Zitat Filippın, C.: Benchmarking the energy efficiency and greenhouse gases emissions of school buildings in central Argentina. Build. Environ. 35(5), 407–414 (2000)CrossRef Filippın, C.: Benchmarking the energy efficiency and greenhouse gases emissions of school buildings in central Argentina. Build. Environ. 35(5), 407–414 (2000)CrossRef
5.
Zurück zum Zitat Chung, W.: Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2011)CrossRef Chung, W.: Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2011)CrossRef
7.
Zurück zum Zitat Gao, X., Malkawi, A.: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm. Energy Build. 84, 607–616 (2014)CrossRef Gao, X., Malkawi, A.: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm. Energy Build. 84, 607–616 (2014)CrossRef
8.
Zurück zum Zitat Sharp, T.: Energy benchmarking in commercial office buildings. Proc. ACEEE Summer Study Energy Effic. Build. 7996, 321–329 (1996) Sharp, T.: Energy benchmarking in commercial office buildings. Proc. ACEEE Summer Study Energy Effic. Build. 7996, 321–329 (1996)
9.
Zurück zum Zitat Yalcintas, M.: An energy benchmarking model based on artificial neural network method with a case example for tropical climates. Int. J. Energy Res. 30, 1158–1174 (2006)CrossRef Yalcintas, M.: An energy benchmarking model based on artificial neural network method with a case example for tropical climates. Int. J. Energy Res. 30, 1158–1174 (2006)CrossRef
10.
Zurück zum Zitat Grolinger, K., Capretz, M.A., Seewald, L.: Energy consumption prediction with big data: balancing prediction accuracy and computational resources. In: IEEE International Congress on Big Data Congress, pp. 157–164 (2016) Grolinger, K., Capretz, M.A., Seewald, L.: Energy consumption prediction with big data: balancing prediction accuracy and computational resources. In: IEEE International Congress on Big Data Congress, pp. 157–164 (2016)
11.
Zurück zum Zitat Roth, J., Rajagopal, R.: Benchmarking building energy efficiency using quantile regression. Energy 152, 866–876 (2018)CrossRef Roth, J., Rajagopal, R.: Benchmarking building energy efficiency using quantile regression. Energy 152, 866–876 (2018)CrossRef
12.
Zurück zum Zitat Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)MathSciNetMATH
13.
Zurück zum Zitat Wang, L., El-Gohary, N. M.: Data-driven residential building energy consumption prediction for supporting multiscale sustainability assessment. In: Computing in Civil Engineering 2017, pp. 324–332. ASCE (2017) Wang, L., El-Gohary, N. M.: Data-driven residential building energy consumption prediction for supporting multiscale sustainability assessment. In: Computing in Civil Engineering 2017, pp. 324–332. ASCE (2017)
14.
Zurück zum Zitat Wang, L., El-Gohary, N. M.: Data-driven approach to identify the impacts of urban neighborhood characteristics on building energy consumption. In: Construction Research Congress 2018, pp. 664–674. ASCE (2018) Wang, L., El-Gohary, N. M.: Data-driven approach to identify the impacts of urban neighborhood characteristics on building energy consumption. In: Construction Research Congress 2018, pp. 664–674. ASCE (2018)
15.
Zurück zum Zitat Edwards, R.E., New, J., Parker, L.E.: Predicting future hourly residential electrical consumption: a machine learning case study. Energy and Build. Energy Build 49, 591–603 (2012)CrossRef Edwards, R.E., New, J., Parker, L.E.: Predicting future hourly residential electrical consumption: a machine learning case study. Energy and Build. Energy Build 49, 591–603 (2012)CrossRef
Metadaten
Titel
Machine-Learning-Based Model for Supporting Energy Performance Benchmarking for Office Buildings
verfasst von
Lufan Wang
Nora M. El-Gohary
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-00220-6_91