Skip to main content

2018 | OriginalPaper | Buchkapitel

Deep Recurrent Level Set for Segmenting Brain Tumors

verfasst von : T. Hoang Ngan Le, Raajitha Gummadi, Marios Savvides

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Variational Level Set (VLS) has been a widely used method in medical segmentation. However, segmentation accuracy in the VLS method dramatically decreases when dealing with intervening factors such as lighting, shadows, colors, etc. Additionally, results are quite sensitive to initial settings and are highly dependent on the number of iterations. In order to address these limitations, the proposed method incorporates VLS into deep learning by defining a novel end-to-end trainable model called as Deep Recurrent Level Set (DRLS). The proposed DRLS consists of three layers, i.e., Convolutional layers, Deconvolutional layers with skip connections and LevelSet layers. Brain tumor segmentation is taken as an instant to illustrate the performance of the proposed DRLS. Convolutional layer learns visual representation of brain tumor at different scales. Brain tumors occupy a small portion of the image, thus, deconvolutional layers are designed with skip connections to obtain a high quality feature map. Level-Set Layer drives the contour towards the brain tumor. In each step, the Convolutional Layer is fed with the LevelSet map to obtain a brain tumor feature map. This in turn serves as input for the LevelSet layer in the next step. The experimental results have been obtained on BRATS2013, BRATS2015 and BRATS2017 datasets. The proposed DRLS model improves both computational time and segmentation accuracy when compared to the classic VLS-based method. Additionally, a fully end-to-end system DRLS achieves state-of-the-art segmentation on brain tumors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRef Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRef
2.
Zurück zum Zitat Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: ICPR (2002) Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: ICPR (2002)
3.
Zurück zum Zitat Taheri, S., Ong, S.H., Chong, V.F.H.: Level-set segmentation of brain tumors using a threshold-based speed function. Image Vis. Comput. 28(1), 26–37 (2010)CrossRef Taheri, S., Ong, S.H., Chong, V.F.H.: Level-set segmentation of brain tumors using a threshold-based speed function. Image Vis. Comput. 28(1), 26–37 (2010)CrossRef
4.
Zurück zum Zitat Thapaliya, K., Pyun, J.-Y., Park, C.-S., Kwon, G.-R.: Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Computer. Med. Imaging Graph. 37(7), 522–537 (2013)CrossRef Thapaliya, K., Pyun, J.-Y., Park, C.-S., Kwon, G.-R.: Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Computer. Med. Imaging Graph. 37(7), 522–537 (2013)CrossRef
5.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
6.
Zurück zum Zitat Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. (TIP) 10(2), 266–277 (2001)CrossRef Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. (TIP) 10(2), 266–277 (2001)CrossRef
7.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
8.
Zurück zum Zitat Anitha, V., Murugavalli, S.: Brain tumor classification using two-tier classifier with adaptive segmentation technique. IET Comput. Vis. 10(1), 9–17 (2016)CrossRef Anitha, V., Murugavalli, S.: Brain tumor classification using two-tier classifier with adaptive segmentation technique. IET Comput. Vis. 10(1), 9–17 (2016)CrossRef
9.
Zurück zum Zitat Dera, D., Bouaynaya, N., Fathallah-Shaykh, H.M.: Assessing the non-negative matrix factorization level set segmentation on the brats benchmark. In: Proceedings MICCAI-BRATS Workshop 2016 (2016) Dera, D., Bouaynaya, N., Fathallah-Shaykh, H.M.: Assessing the non-negative matrix factorization level set segmentation on the brats benchmark. In: Proceedings MICCAI-BRATS Workshop 2016 (2016)
10.
Zurück zum Zitat Tustison, N.J.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef Tustison, N.J.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef
11.
Zurück zum Zitat Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef
12.
Zurück zum Zitat Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings, Winning Contribution, pp. 31–35 (2014) Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings, Winning Contribution, pp. 31–35 (2014)
13.
Zurück zum Zitat Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014) Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)
14.
Zurück zum Zitat Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRef Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRef
16.
Zurück zum Zitat Kamnitsas, K.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRef Kamnitsas, K.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRef
17.
Zurück zum Zitat Matan, O., Burges, C.J., LeCun, Y., Denker, J.S.: Multi-digit recognition using a space displacement neural network. In: Advances in Neural Information Processing Systems, pp. 488–495 (1992) Matan, O., Burges, C.J., LeCun, Y., Denker, J.S.: Multi-digit recognition using a space displacement neural network. In: Advances in Neural Information Processing Systems, pp. 488–495 (1992)
18.
Zurück zum Zitat Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef
19.
Zurück zum Zitat Chang, P.D.: Fully convolutional neural networks with hyperlocal features for brain tumor segmentation. In: Proceedings MICCAI-BRATS Workshop, pp. 4–9 (2016) Chang, P.D.: Fully convolutional neural networks with hyperlocal features for brain tumor segmentation. In: Proceedings MICCAI-BRATS Workshop, pp. 4–9 (2016)
Metadaten
Titel
Deep Recurrent Level Set for Segmenting Brain Tumors
verfasst von
T. Hoang Ngan Le
Raajitha Gummadi
Marios Savvides
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00931-1_74

Premium Partner