Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Spatial Sound of Musical Instruments

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Musical instruments create a spatial sound impression. This chapter provides an introduction to the acoustics of sound propagation from musical instruments. An overview of microphone array techniques to measure the sound radiation characteristics from the near and the far field is given. The complex point source model simplifies the physical constellation and describes what is heard by the listener. It serves as a simplification for psychoacoustic sound field synthesis for music presented in this book. Finally, the chapter illustrates strategies to visualize measured sound radiation properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As described in Ziemer (2011, 2018), mainly based on Pierce (2007), Williams (1999), Morse and Ingard (1986), Rabenstein et al. (2006) and Ahrens (2012).
 
2
See Mechel (2008), pp. 5f, Teutsch (2007), Wöhe (1984), Pierce (2007), p. 36 and Baalman (2008), p. 23.
 
3
See e.g. Hirschberg et al. (1996), describing shock-waves in brass instruments.
 
4
See e.g. Meyer et al. (2001), p. 2.
 
5
See e.g. Williams (1999), p. 21.
 
6
See Williams (1999), p. 22.
 
7
See Ahrens (2012), p. 23.
 
8
Or an exponential increase which is ignored since it is non-physical, see Ahrens (2012), p. 23.
 
9
See e.g. Müller (2008), p. 65.
 
10
See e.g. Vorländer (2008).
 
11
See e.g. Roederer (2008), pp. 89f.
 
12
See Ahrens (2012), p. 42.
 
13
Cf. e.g. Ahrens (2012), p. 66.
 
14
See e.g. Mechel (2013), p. 2, Magalhães and Tenenbaum (2004), p. 204, Ahrens (2012), p. 42.
 
15
From Kostek (2005), p. 24.
 
16
From Warusfel et al. (1997), p. 1.
 
17
See Schanz (1966), p. 2.
 
18
Cf. Rossing (1990), p. 48.
 
19
See Fletcher and Rossing (2008), p. 308.
 
20
An examination of the relationship between features of direct sound and  perceived source extent can be found e.g. in Ziemer (2014) and will be discussed in the context of  room acoustics in more detail in Sect. 6.​2.
 
21
Albrecht et al. (2005), p. 1.
 
22
Referred to as “structure- and air-borne sound”, see e.g. Blauert and Xiang (2009), p. 177.
 
23
See Hall (2008), pp. 290–294.
 
24
See Meyer (2008), p. 156, Warusfel et al. (1997), p. 4, Pätynen and Lokki (2010) and Otondo and Rindel (2005).
 
25
In Meyer (2009), pp. 129–177, Meyer (2008), pp. 123–180, Pätynen and Lokki (2010), and in Hohl (2009) and Hohl and Zotter (2010).
 
26
See Meyer (2009), p. 24, Hammond and White (2008), pp. 4–7 and Hall (2008), pp. 124–125.
 
27
See Bruhn (2002), p. 452.
 
28
See e.g. Williams (1999), p. 89 and p. 236.
 
29
For an extensive revision of these and other methods, current research and prospects, see e.g. Magalhães and Tenenbaum (2004).
 
30
See e.g. Pätynen and Lokki (2010), p. 139.
 
31
See e.g. Otondo and Rindel (2004), p. 1179 or Otondo and Rindel (2005), p. 903, Pelzer et al. (2012), Pätynen and Lokki (2010) and Zotter et al. (2007).
 
32
Mainly based on Williams (1999), pp. 183–208, Teutsch (2007), pp. 41ff, Arfken (1985), pp. 111ff and pp. 573ff, Slavik and Weinzierl (2008) and Ahrens (2012), p. 24ff.
 
33
See e.g. Williams (1999), p. 185.
 
34
See e.g. Teutsch (2007), p. 44, Ahrens (2012), p. 31, Hulsebos (2004), pp. 16–19 and Zotter (2009), p. 35.
 
35
See e.g. Magalhães and Tenenbaum (2004), p. 204, Ziemer (2014, 2015, 2017), Ziemer and Bader (2015).
 
36
See Arfken (1985), p. 604.
 
37
See e.g. Kim (2007), p. 1079.
 
38
See e.g. Gannot and Cohen (2008), p. 946.
 
39
Mainly based on Hald (2008) and Michel and Möser (2010).
 
40
See e.g. Michel and Möser (2010).
 
41
These are presented e.g. in Bader (2014), Michel and Möser (2010), and Gannot and Cohen (2008).
 
42
See e.g. Yang et al. (2008), p. 157.
 
43
See e.g. Yang et al. (2008), Maynard et al. (1985), Hayek (2008), Kim (2007).
 
44
As proposed in Bader (2010) and discussed extensively in Bader (2014).
 
45
See Bader et al. (2009, 2017), Richter et al. (2013), Münster et al. (2013), Bader (2011, 2012a, b), Pfeifle (2016), Takada and Bader (2012), and Plath et al. (2015).
 
46
See e.g. Magalhães and Tenenbaum (2004), pp. 200ff.
 
47
See e.g. Ih (2008), Bai (1992), Veronesi and Maynard (1989).
 
48
See e.g. Hutchins (1977, 1981) and Hutchins et al. (1971).
 
49
See e.g. Fleischer (2000).
 
50
See e.g. Bader (2013), p. 57 and p. 113.
 
51
This and other optical measurement methods are explained e.g. in Molin (2007) and Molin and Zipser (2004).
 
52
See e.g. Saldner et al. (1997).
 
53
See e.g. Meyer (1995, 2008, 2009).
 
54
See e.g. Meyer (2008), p. 156.
 
55
See e.g. Vorländer (2008), p. 127.
 
Literatur
Zurück zum Zitat Albrecht B, de Vries D, Jacques R, Melchior F (2005) An approach for multichannel recording and reproduction of sound source directivity. In: Audio engineering society convention 119, Oct 2005 Albrecht B, de Vries D, Jacques R, Melchior F (2005) An approach for multichannel recording and reproduction of sound source directivity. In: Audio engineering society convention 119, Oct 2005
Zurück zum Zitat Arfken G (1985) Mathematical methods for physicists, 3rd edn. Dover Arfken G (1985) Mathematical methods for physicists, 3rd edn. Dover
Zurück zum Zitat Baalman M (2008) On Wave Field Synthesis and electro-acoustic music, with a particular focus on the reproduction of arbitrarily shaped sound sources. VDM, Saarbrücken Baalman M (2008) On Wave Field Synthesis and electro-acoustic music, with a particular focus on the reproduction of arbitrarily shaped sound sources. VDM, Saarbrücken
Zurück zum Zitat Bader R, Münster M, Richter J, Timm H (2009) Measurements of drums and flutes. In: Bader R (ed) Musical acoustics, neurocognition and psychology of music. Peter Lang, Frankfurt am Main, pp 15–55 Bader R, Münster M, Richter J, Timm H (2009) Measurements of drums and flutes. In: Bader R (ed) Musical acoustics, neurocognition and psychology of music. Peter Lang, Frankfurt am Main, pp 15–55
Zurück zum Zitat Bruhn H (2002) Wahrnehmung und Repräsentation musikalischer Strukturen. In: Bruhn H, Oerter R, Rösing H (eds) Musikpsychologie. Ein Handbuch, 4th edn. Rowohlt, Reinbek bei Hamburg, pp 452–459 Bruhn H (2002) Wahrnehmung und Repräsentation musikalischer Strukturen. In: Bruhn H, Oerter R, Rösing H (eds) Musikpsychologie. Ein Handbuch, 4th edn. Rowohlt, Reinbek bei Hamburg, pp 452–459
Zurück zum Zitat Chladni EFF (1787). Entdeckungen über die Theorie des Klanges. Nabu, Leipzig Chladni EFF (1787). Entdeckungen über die Theorie des Klanges. Nabu, Leipzig
Zurück zum Zitat Fleischer H (2000). Schwingungen und Schall von Glocken. In: Fortschritte der Akustik—DAGA ’00, Oldenburg Fleischer H (2000). Schwingungen und Schall von Glocken. In: Fortschritte der Akustik—DAGA ’00, Oldenburg
Zurück zum Zitat Fletcher NH, Rossing TD (2008) The physics of musical instruments, 2nd edn. Springer, New York Fletcher NH, Rossing TD (2008) The physics of musical instruments, 2nd edn. Springer, New York
Zurück zum Zitat Hall DE (2008) Musikalische Akustik. Ein Handbuch. Schott, Mainz Hall DE (2008) Musikalische Akustik. Ein Handbuch. Schott, Mainz
Zurück zum Zitat Hohl F (2009) Kugelmikrofonarray zur Abstrahlungsvermessung von Musikinstrumenten. Master’s thesis, University of Music and Performing Arts Graz, Technical University Graz Hohl F (2009) Kugelmikrofonarray zur Abstrahlungsvermessung von Musikinstrumenten. Master’s thesis, University of Music and Performing Arts Graz, Technical University Graz
Zurück zum Zitat Hohl F, Zotter F (2010) Similarity of musical instrument radiation-patterns in pitch and partial. In: Fortschritte der Akustik—DAGA ’10, Berlin Hohl F, Zotter F (2010) Similarity of musical instrument radiation-patterns in pitch and partial. In: Fortschritte der Akustik—DAGA ’10, Berlin
Zurück zum Zitat Hutchins CM, Stetson KA, Taylor PA (1971) Clarification of the ‘free plate tap tones’ by hologram interferometry. CAS Newsletter 16:15–23 Hutchins CM, Stetson KA, Taylor PA (1971) Clarification of the ‘free plate tap tones’ by hologram interferometry. CAS Newsletter 16:15–23
Zurück zum Zitat Hutchins CM (1977) Acoustics for the violin maker. CAS Newsletter 28 Hutchins CM (1977) Acoustics for the violin maker. CAS Newsletter 28
Zurück zum Zitat Ih J-G (2008) Inverse boundary element techniques for the holographic identification of vibro-acoustic source parameters. In: Marburg S, Nolte B (eds) Computational acoustics of noise propagation in fluids—finite and boundary element methods. Springer, Berlin, pp 547–572. https://doi.org/10.1007/978-3-540-77448-8_21 Ih J-G (2008) Inverse boundary element techniques for the holographic identification of vibro-acoustic source parameters. In: Marburg S, Nolte B (eds) Computational acoustics of noise propagation in fluids—finite and boundary element methods. Springer, Berlin, pp 547–572. https://​doi.​org/​10.​1007/​978-3-540-77448-8_​21
Zurück zum Zitat Meyer J, Meyer P, Baird J (2001) Far-field loudspeaker interaction: accuracy in theory and practice. In: Audio Engineering Society Convention 110, May 2001 Meyer J, Meyer P, Baird J (2001) Far-field loudspeaker interaction: accuracy in theory and practice. In: Audio Engineering Society Convention 110, May 2001
Zurück zum Zitat Meyer J (1995) Akustik und musikalische Aufführungspraxis. Ein Leitfaden für Akustiker, Tonmeister, Musiker, Instrumentenbauer und Architekten. PPV, Frankfurt am Main, 3. vollständig überarbeitete und erweiterte edition Meyer J (1995) Akustik und musikalische Aufführungspraxis. Ein Leitfaden für Akustiker, Tonmeister, Musiker, Instrumentenbauer und Architekten. PPV, Frankfurt am Main, 3. vollständig überarbeitete und erweiterte edition
Zurück zum Zitat Rabenstein R, Spors S, Steffen P (2006) Wave field synthesis techniques for spatial sound reproduction. In: Hänsler E, Schmidt G (eds) Topics in acoustic echo and noise control. Selected methods for the cancellation of acoustical echoes, the reduction of background noise, and speech processing, Signals and communication technology, Chap. 13. Springer, Berlin, pp 517–545 Rabenstein R, Spors S, Steffen P (2006) Wave field synthesis techniques for spatial sound reproduction. In: Hänsler E, Schmidt G (eds) Topics in acoustic echo and noise control. Selected methods for the cancellation of acoustical echoes, the reduction of background noise, and speech processing, Signals and communication technology, Chap. 13. Springer, Berlin, pp 517–545
Zurück zum Zitat Rossing TD (1990) The science of sound, 2nd edn. Addison-Wesley, Reading (Massachusetts) Rossing TD (1990) The science of sound, 2nd edn. Addison-Wesley, Reading (Massachusetts)
Zurück zum Zitat Saldner HO, Molin N-E, Jansson EV (1997) Sound distribution from forced vibration modes of a violin measured by reciprocal and tv holography. CAS J 3:10–16 Saldner HO, Molin N-E, Jansson EV (1997) Sound distribution from forced vibration modes of a violin measured by reciprocal and tv holography. CAS J 3:10–16
Zurück zum Zitat Schanz GW (1966) Stereo-Taschenbuch. Stereo-Technik für den Praktiker. Philips, Eindhoven Schanz GW (1966) Stereo-Taschenbuch. Stereo-Technik für den Praktiker. Philips, Eindhoven
Zurück zum Zitat Veronesi WA, Maynard JD (1989) Digital holographic reconstruction of sources with arbitrarily shaped surfaces. J Acoust Soc Am 85:588–598CrossRef Veronesi WA, Maynard JD (1989) Digital holographic reconstruction of sources with arbitrarily shaped surfaces. J Acoust Soc Am 85:588–598CrossRef
Zurück zum Zitat Warusfel O, Derogis P, Caussé R (1997) Radiation synthesis with digitally controlled loudspeakers. In: Audio engineering society convention 103, Sep 1997 Warusfel O, Derogis P, Caussé R (1997) Radiation synthesis with digitally controlled loudspeakers. In: Audio engineering society convention 103, Sep 1997
Zurück zum Zitat Wöhe W (1984) Grundgleichungen des schallfeldes und elementare ausbreitungsvorgänge. In: Fasold W, Kraak W, Schirmer W (eds) Taschenbuch Akustik. Teil 1, Chap. 1.2. Verlag Technik, Berlin, pp 23–31 Wöhe W (1984) Grundgleichungen des schallfeldes und elementare ausbreitungsvorgänge. In: Fasold W, Kraak W, Schirmer W (eds) Taschenbuch Akustik. Teil 1, Chap. 1.2. Verlag Technik, Berlin, pp 23–31
Zurück zum Zitat Williams EG (1999) Fourier acoustics. Sound radiation and nearfield acoustical holography. Academic Press, CambridgeCrossRef Williams EG (1999) Fourier acoustics. Sound radiation and nearfield acoustical holography. Academic Press, CambridgeCrossRef
Zurück zum Zitat Ziemer T (2011) Wave field synthesis. Theory and application. (magister thesis), University of Hamburg Ziemer T (2011) Wave field synthesis. Theory and application. (magister thesis), University of Hamburg
Zurück zum Zitat Ziemer T (2017) Source width in music production. Methods in stereo, ambisonics, and wave field synthesis. In: Schneider A (ed) Studies in musical acoustics and psychoacoustics, vol 4. Current research in systematic musicoogy, Chap. 10. Springer, Cham, pp 299–340. https://doi.org/10.1007/978-3-319-47292-8_10 Ziemer T (2017) Source width in music production. Methods in stereo, ambisonics, and wave field synthesis. In: Schneider A (ed) Studies in musical acoustics and psychoacoustics, vol 4. Current research in systematic musicoogy, Chap. 10. Springer, Cham, pp 299–340. https://​doi.​org/​10.​1007/​978-3-319-47292-8_​10
Zurück zum Zitat Zotter F (2009) Analysis and synthesis of sound-radiation with spherical arrays. PhD thesis, University of Music and Performing Arts, Graz Zotter F (2009) Analysis and synthesis of sound-radiation with spherical arrays. PhD thesis, University of Music and Performing Arts, Graz
Zurück zum Zitat Zotter F, Sontacchi A, Noisternig M, Höldrich R (2007) Capturing the radiation characteristics of the bonang barung. In: 3rd congress of the alps adria acoustics association, Graz Zotter F, Sontacchi A, Noisternig M, Höldrich R (2007) Capturing the radiation characteristics of the bonang barung. In: 3rd congress of the alps adria acoustics association, Graz
Metadaten
Titel
Spatial Sound of Musical Instruments
verfasst von
Tim Ziemer
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-23033-3_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.