Skip to main content

2020 | OriginalPaper | Buchkapitel

Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion

verfasst von : Prodromos Kolyvakis, Alexandros Kalousis, Dimitris Kiritsis

Erschienen in: The Semantic Web

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning embeddings of entities and relations existing in knowledge bases allows the discovery of hidden patterns in them. In this work, we examine the contribution of geometrical space to the task of knowledge base completion. We focus on the family of translational models, whose performance has been lagging. We extend these models to the hyperbolic space so as to better reflect the topological properties of knowledge bases. We investigate the type of regularities that our model, dubbed HyperKG, can capture and show that it is a prominent candidate for effectively representing a subset of Datalog rules. We empirically show, using a variety of link prediction datasets, that hyperbolic space allows to narrow down significantly the performance gap between translational and bilinear models and effectively represent certain types of rules.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The matrix, used in Möbius multiplication, and the biases are defined on Euclidean space and are learned through Euclidean SGD.
 
2
Only existential variables can be mapped to labelled nulls.
 
3
In our experiments, we noticed that a rather small dropout rate had no effect on the model’s generalisation capability.
 
Literatur
1.
Zurück zum Zitat Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley Longman Publishing Co. Inc., Boston (1995) Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley Longman Publishing Co. Inc., Boston (1995)
2.
Zurück zum Zitat Ahlfors, L.V.: Invariant operators and integral representations in hyperbolic space. Math. Scand. 36(1), 27–43 (1975)MathSciNetCrossRef Ahlfors, L.V.: Invariant operators and integral representations in hyperbolic space. Math. Scand. 36(1), 27–43 (1975)MathSciNetCrossRef
3.
Zurück zum Zitat Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a Python package for analysis of heavy-tailed distributions. PloS One 9(1), e85777 (2014)CrossRef Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a Python package for analysis of heavy-tailed distributions. PloS One 9(1), e85777 (2014)CrossRef
4.
Zurück zum Zitat Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25 (2000)CrossRef Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25 (2000)CrossRef
5.
Zurück zum Zitat Balažević, I., Allen, C., Hospedales, T.: Multi-relational Poincaré graph embeddings. In: NeurIPS (2019) Balažević, I., Allen, C., Hospedales, T.: Multi-relational Poincaré graph embeddings. In: NeurIPS (2019)
6.
7.
Zurück zum Zitat Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)CrossRef Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)CrossRef
8.
Zurück zum Zitat Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008) Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008)
9.
Zurück zum Zitat Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Automat. Contr. 58(9), 2217–2229 (2013)MathSciNetCrossRef Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Automat. Contr. 58(9), 2217–2229 (2013)MathSciNetCrossRef
10.
Zurück zum Zitat Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS (2013) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS (2013)
12.
Zurück zum Zitat Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018) Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018)
13.
Zurück zum Zitat Ebisu, T., Ichise, R.: TorusE: knowledge graph embedding on a lie group. In: AAAI (2018) Ebisu, T., Ichise, R.: TorusE: knowledge graph embedding on a lie group. In: AAAI (2018)
15.
Zurück zum Zitat Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999). ACMCrossRef Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999). ACMCrossRef
16.
Zurück zum Zitat Feng, J., Huang, M., Wang, M., Zhou, M., Hao, Y., Zhu, X.: Knowledge graph embedding by flexible translation. In: KR (2016) Feng, J., Huang, M., Wang, M., Zhou, M., Hao, Y., Zhu, X.: Knowledge graph embedding by flexible translation. In: KR (2016)
17.
Zurück zum Zitat Ganea, O., Becigneul, G., Hofmann, T.: Hyperbolic entailment cones for learning hierarchical embeddings. In: ICML, pp. 1646–1655 (2018) Ganea, O., Becigneul, G., Hofmann, T.: Hyperbolic entailment cones for learning hierarchical embeddings. In: ICML, pp. 1646–1655 (2018)
18.
Zurück zum Zitat Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning, vol. 1. MIT Press, Cambridge (2007)CrossRef Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning, vol. 1. MIT Press, Cambridge (2007)CrossRef
19.
Zurück zum Zitat Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)
20.
Zurück zum Zitat Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in product spaces. In: ICLR (2018) Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in product spaces. In: ICLR (2018)
21.
Zurück zum Zitat Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules. In: KR (2018) Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules. In: KR (2018)
22.
Zurück zum Zitat Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL-IJCNLP, pp. 687–696 (2015) Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL-IJCNLP, pp. 687–696 (2015)
23.
Zurück zum Zitat Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS, pp. 4284–4295 (2018) Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS, pp. 4284–4295 (2018)
24.
Zurück zum Zitat Kolyvakis, P., Kalousis, A., Kiritsis, D.: HyperKG: hyperbolic knowledge graph embeddings for knowledge base completion. arXiv preprint arXiv:1908.04895 (2019) Kolyvakis, P., Kalousis, A., Kiritsis, D.: HyperKG: hyperbolic knowledge graph embeddings for knowledge base completion. arXiv preprint arXiv:​1908.​04895 (2019)
25.
Zurück zum Zitat Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)MathSciNetCrossRef Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)MathSciNetCrossRef
26.
Zurück zum Zitat Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML (2018) Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML (2018)
27.
Zurück zum Zitat Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)CrossRef Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)CrossRef
29.
Zurück zum Zitat Miller, G.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998) Miller, G.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
31.
Zurück zum Zitat Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Log. Program. 19, 629–679 (1994)MathSciNetCrossRef Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Log. Program. 19, 629–679 (1994)MathSciNetCrossRef
32.
Zurück zum Zitat Newman, M.E.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)CrossRef Newman, M.E.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)CrossRef
34.
Zurück zum Zitat Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRef Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRef
36.
Zurück zum Zitat Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011) Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)
37.
Zurück zum Zitat Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: NeurIPS (2017) Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: NeurIPS (2017)
38.
Zurück zum Zitat Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In: ICML (2018) Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. In: ICML (2018)
39.
Zurück zum Zitat Papadopoulos, F., Aldecoa, R., Krioukov, D.: Network geometry inference using common neighbors. Phys. Rev. E 92(2), 022807 (2015)CrossRef Papadopoulos, F., Aldecoa, R., Krioukov, D.: Network geometry inference using common neighbors. Phys. Rev. E 92(2), 022807 (2015)CrossRef
40.
43.
Zurück zum Zitat Schwarz, U., Smith, B.: Ontological relations. Appl. Ontol. Introduction 219, 234 (2008) Schwarz, U., Smith, B.: Ontological relations. Appl. Ontol. Introduction 219, 234 (2008)
44.
Zurück zum Zitat Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NeurIPS, pp. 926–934 (2013) Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NeurIPS, pp. 926–934 (2013)
45.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH
46.
Zurück zum Zitat Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29(1), 41–78 (2005)CrossRef Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29(1), 41–78 (2005)CrossRef
47.
Zurück zum Zitat Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007) Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)
48.
Zurück zum Zitat Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019) Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)
50.
51.
Zurück zum Zitat Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016) Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016)
55.
Zurück zum Zitat Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)CrossRef Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)CrossRef
56.
Zurück zum Zitat Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilinear models. In: AAAI (2018) Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilinear models. In: AAAI (2018)
57.
Zurück zum Zitat Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014) Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)
58.
Zurück zum Zitat West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: WWW (2014) West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: WWW (2014)
59.
Zurück zum Zitat Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: IJCAI (2016) Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: IJCAI (2016)
60.
Zurück zum Zitat Xie, Q., Ma, X., Dai, Z., Hovy, E.: An interpretable knowledge transfer model for knowledge base completion. In: ACL (2017) Xie, Q., Ma, X., Dai, Z., Hovy, E.: An interpretable knowledge transfer model for knowledge base completion. In: ACL (2017)
61.
Zurück zum Zitat Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning for knowledge graphs. In: EMNLP, October-November 2018 Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning for knowledge graphs. In: EMNLP, October-November 2018
62.
Zurück zum Zitat Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015) Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
63.
Zurück zum Zitat Zipf, G.K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley, Boston (1949) Zipf, G.K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley, Boston (1949)
Metadaten
Titel
Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
verfasst von
Prodromos Kolyvakis
Alexandros Kalousis
Dimitris Kiritsis
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-49461-2_12