Skip to main content

2020 | OriginalPaper | Buchkapitel

Proposal of a Highly Birefringent Bow-Tie Photonic Crystal Fiber for Nonlinear Applications

verfasst von : Md. Moynul Hossain, Md. Anowar Kabir, Md. Mehedi Hassan, Md. Ashikur Rahman Parag, Md. Nadim Hossain, Bikash Kumar Paul, Muhammad Shahin Uddin, Kawsar Ahmed

Erschienen in: Cyber Security and Computer Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this letter, a bow-tie-type photonic crystal fiber (PCF) with high birefringence (Hi-Bi) has been proposed. The core of the PCF is elliptical with Chalcogenide glass (\(Ga_{8}Sb_{32}S_{60}\)) material. The whole analysis of the PCF is finished by the finite element method (FEM) for wavelength ranging from 2,000 nm to 3,000 nm to obtain some optical parameters like birefringence, beat length, power fraction, numerical aperture, effective refractive area, and nonlinearity. Therefore, a perfectly matched layer (PML) is also used to throw out unwanted radiation directed as an absorbing boundary condition (ABC). It has generated high birefringence (Hi-Bi) of 0.287 at 2,975 nm wavelength, the highest power fraction of 89.39% at 2,000 nm wavelength, the higher numerical aperture of 0.86, and the better nonlinearity of 6.10 \(\times \) \(10^{3}\) \(\mathrm{W}^{-1} \mathrm{Km}^{-1}\). Hence, the proposed PCF plays a significant role in PCF areas with the better polarization filter, cross talk (CT), sensing, and nonlinear applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Paul, B.K., Moctader, M.G., Ahmed, K., Khalek, M.A.: Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications. Results Phys. 10, 374–378 (2018)CrossRef Paul, B.K., Moctader, M.G., Ahmed, K., Khalek, M.A.: Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications. Results Phys. 10, 374–378 (2018)CrossRef
2.
Zurück zum Zitat Sonne, A., Ouchar, A., Sonne, K.: Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber. Optik 127(1), 8–10 (2016)CrossRef Sonne, A., Ouchar, A., Sonne, K.: Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber. Optik 127(1), 8–10 (2016)CrossRef
3.
Zurück zum Zitat Wang, A., et al.: Visible supercontinuum generation with sub-nanosecond 532-nm pulses in all-solid photonic bandgap fiber. IEEE Photonics Technol. Lett. 24(2), 143–145 (2011)CrossRef Wang, A., et al.: Visible supercontinuum generation with sub-nanosecond 532-nm pulses in all-solid photonic bandgap fiber. IEEE Photonics Technol. Lett. 24(2), 143–145 (2011)CrossRef
4.
Zurück zum Zitat Yatsenko, Y.P., Pryamikov, A.D.: Parametric frequency conversion in photonic crystal fibres with germanosilicate core. J. Opt. A: Pure Appl. Opt. 9(7), 716 (2007)CrossRef Yatsenko, Y.P., Pryamikov, A.D.: Parametric frequency conversion in photonic crystal fibres with germanosilicate core. J. Opt. A: Pure Appl. Opt. 9(7), 716 (2007)CrossRef
6.
Zurück zum Zitat Habib, M.S., Ahmad, R., Habib, M.S., Hasan, M.I.: Residual dispersion compensation over the S+ C+ L+ U wavelength bands using highly birefringent octagonal photonic crystal fiber. Appl. Opt. 53(14), 3057–3062 (2014)CrossRef Habib, M.S., Ahmad, R., Habib, M.S., Hasan, M.I.: Residual dispersion compensation over the S+ C+ L+ U wavelength bands using highly birefringent octagonal photonic crystal fiber. Appl. Opt. 53(14), 3057–3062 (2014)CrossRef
7.
Zurück zum Zitat Emiliyanov, G., Hoiby, P., Pedersen, L., Bang, O.: Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13(3), 3242–3251 (2013)CrossRef Emiliyanov, G., Hoiby, P., Pedersen, L., Bang, O.: Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13(3), 3242–3251 (2013)CrossRef
8.
Zurück zum Zitat Woodward, R.M., Wallace, V.P., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)CrossRef Woodward, R.M., Wallace, V.P., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)CrossRef
9.
Zurück zum Zitat Zhang, J., Grischkowsky, D.: Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29(14), 1617–1619 (2004)CrossRef Zhang, J., Grischkowsky, D.: Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29(14), 1617–1619 (2004)CrossRef
10.
Zurück zum Zitat Zhanqiang, H., Zhang, Y., Zhou, H., Wang, Z., Zeng, X.: Mid-infrared high birefringence bow-tie-type Ge20Sb15Se65 based PCF with large nonlinearity by using hexagonal elliptical air hole. Fiber Integr. Opt. 37(1), 21–36 (2018)CrossRef Zhanqiang, H., Zhang, Y., Zhou, H., Wang, Z., Zeng, X.: Mid-infrared high birefringence bow-tie-type Ge20Sb15Se65 based PCF with large nonlinearity by using hexagonal elliptical air hole. Fiber Integr. Opt. 37(1), 21–36 (2018)CrossRef
11.
Zurück zum Zitat Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141 (2011)CrossRef Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141 (2011)CrossRef
12.
Zurück zum Zitat Eggleton, B.J.: Chalcogenide photonics: fabrication, devices and applications Introduction. Opt. Express 18(25), 26632–26634 (2010)CrossRef Eggleton, B.J.: Chalcogenide photonics: fabrication, devices and applications Introduction. Opt. Express 18(25), 26632–26634 (2010)CrossRef
13.
Zurück zum Zitat Zhang, M.Y., Li, S.G., Yao, Y.Y., Zhang, L., Fu, B., Yin, G.B.: Influence of micro-structured core on characteristics of photonic crystal fibers. Acta Phys. Sinica 59(5), 3278–3285 (2010)CrossRef Zhang, M.Y., Li, S.G., Yao, Y.Y., Zhang, L., Fu, B., Yin, G.B.: Influence of micro-structured core on characteristics of photonic crystal fibers. Acta Phys. Sinica 59(5), 3278–3285 (2010)CrossRef
14.
Zurück zum Zitat Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B.M.A., Grattan, K.T.V.: Golden spiral photonic crystal fiber: polarization and dispersion properties. Opt. Lett. 33(22), 2716–2718 (2008)CrossRef Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B.M.A., Grattan, K.T.V.: Golden spiral photonic crystal fiber: polarization and dispersion properties. Opt. Lett. 33(22), 2716–2718 (2008)CrossRef
15.
Zurück zum Zitat Wang, W., Yang, B., Song, H., Fan, Y.: Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik-Int. J. Light Electron Opt. 124(17), 2901–2903 (2013)CrossRef Wang, W., Yang, B., Song, H., Fan, Y.: Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik-Int. J. Light Electron Opt. 124(17), 2901–2903 (2013)CrossRef
16.
Zurück zum Zitat Revathi, S., Inbathini, S.R., Saifudeen, R.A.: Highly nonlinear and birefringent spiral photonic crystal fiber. Adv. OptoElectronics 2014, 464391 (2014)CrossRef Revathi, S., Inbathini, S.R., Saifudeen, R.A.: Highly nonlinear and birefringent spiral photonic crystal fiber. Adv. OptoElectronics 2014, 464391 (2014)CrossRef
17.
Zurück zum Zitat Revathi, S., Inabathini, S., Sandeep, R.: Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence. Opt. Appl. 45(1), 15–24 (2015) Revathi, S., Inabathini, S., Sandeep, R.: Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence. Opt. Appl. 45(1), 15–24 (2015)
18.
Zurück zum Zitat Yang, T., Wang, E., Jiang, H., Hu, Z., Xie, K.: High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Exp. 23(7), 8329–8337 (2015)CrossRef Yang, T., Wang, E., Jiang, H., Hu, Z., Xie, K.: High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Exp. 23(7), 8329–8337 (2015)CrossRef
19.
Zurück zum Zitat Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.A.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct. Fundam. Appl. 12(2), 205–211 (2014)CrossRef Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.A.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct. Fundam. Appl. 12(2), 205–211 (2014)CrossRef
20.
Zurück zum Zitat Liao, J., et al.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Technol. Lett. 27(17), 1868–1871 (2015)CrossRef Liao, J., et al.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Technol. Lett. 27(17), 1868–1871 (2015)CrossRef
21.
Zurück zum Zitat Hui, Z.Q., et al.: Midinfrared high birefringence \(Ga_{20}Sb_{15}S_{65}\)-based photonic crystal fiber with large nonlinearity using dual-rhombic air hole. J. Nanophotonics 12(1), 016018 (2018)CrossRef Hui, Z.Q., et al.: Midinfrared high birefringence \(Ga_{20}Sb_{15}S_{65}\)-based photonic crystal fiber with large nonlinearity using dual-rhombic air hole. J. Nanophotonics 12(1), 016018 (2018)CrossRef
22.
Zurück zum Zitat Ohishi, Y.: New prospect of soft glass highly nonlinear microstructured optical fibers. In: Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, TuA4\(_-\)2 (2013) Ohishi, Y.: New prospect of soft glass highly nonlinear microstructured optical fibers. In: Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, TuA4\(_-\)2 (2013)
23.
Zurück zum Zitat Chauhan, P., Kumar, A., Kalra, Y., Saini, T.S.: Design and analysis of photonic crystal fiber in Ga-Sb-S chalcogenide glass for nonlinear applications. In: AIP Conference Proceedings, vol. 2009, no. 1, p. 020047 (2018) Chauhan, P., Kumar, A., Kalra, Y., Saini, T.S.: Design and analysis of photonic crystal fiber in Ga-Sb-S chalcogenide glass for nonlinear applications. In: AIP Conference Proceedings, vol. 2009, no. 1, p. 020047 (2018)
24.
Zurück zum Zitat Amiri, I.S., et al.: Design of \(Ga_{20}Sb_{15}S_{65}\) embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik 184, 63–69 (2019)CrossRef Amiri, I.S., et al.: Design of \(Ga_{20}Sb_{15}S_{65}\) embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik 184, 63–69 (2019)CrossRef
25.
Zurück zum Zitat Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019)CrossRef Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019)CrossRef
26.
Zurück zum Zitat Hassan, M.M., Kabir, M.A., Hossain, M.N., Biswas, B., Paul, B.K., Ahmed, K.: Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation. Opt. Quantum Electron. 52(1), 8 (2020)CrossRef Hassan, M.M., Kabir, M.A., Hossain, M.N., Biswas, B., Paul, B.K., Ahmed, K.: Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation. Opt. Quantum Electron. 52(1), 8 (2020)CrossRef
27.
Zurück zum Zitat Hui, Z., Zhang, Y., Soliman, A.H.: Mid-infrared dual-rhombic air hole \(Ga_{20}Sb_{15}S_{65}\) chalcogenide photonic crystal fiber with high birefringence and high nonlinearity. Ceram. Int. 44(9), 10383–10392 (2018)CrossRef Hui, Z., Zhang, Y., Soliman, A.H.: Mid-infrared dual-rhombic air hole \(Ga_{20}Sb_{15}S_{65}\) chalcogenide photonic crystal fiber with high birefringence and high nonlinearity. Ceram. Int. 44(9), 10383–10392 (2018)CrossRef
28.
Zurück zum Zitat Wei, S., et al.: Design on a highly birefringent and highly nonlinear tellurite ellipse core photonic crystal fiber with two zero dispersion wavelengths. Opt. Fiber Technol. 20(4), 320–324 (2014)CrossRef Wei, S., et al.: Design on a highly birefringent and highly nonlinear tellurite ellipse core photonic crystal fiber with two zero dispersion wavelengths. Opt. Fiber Technol. 20(4), 320–324 (2014)CrossRef
29.
Zurück zum Zitat Dabas, B., Sinha, R.K.: Design of highly birefringent chalcogenide glass PCF: a simplest design. Opt. Commun. 284(5), 1186–1191 (2011)CrossRef Dabas, B., Sinha, R.K.: Design of highly birefringent chalcogenide glass PCF: a simplest design. Opt. Commun. 284(5), 1186–1191 (2011)CrossRef
Metadaten
Titel
Proposal of a Highly Birefringent Bow-Tie Photonic Crystal Fiber for Nonlinear Applications
verfasst von
Md. Moynul Hossain
Md. Anowar Kabir
Md. Mehedi Hassan
Md. Ashikur Rahman Parag
Md. Nadim Hossain
Bikash Kumar Paul
Muhammad Shahin Uddin
Kawsar Ahmed
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-52856-0_52

Premium Partner