Skip to main content

2020 | OriginalPaper | Buchkapitel

DEMEA: Deep Mesh Autoencoders for Non-rigidly Deforming Objects

verfasst von : Edgar Tretschk, Ayush Tewari, Michael Zollhöfer, Vladislav Golyanik, Christian Theobalt

Erschienen in: Computer Vision – ECCV 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesh autoencoders are commonly used for dimensionality reduction, sampling and mesh modeling. We propose a general-purpose DEep MEsh Autoencoder (DEMEA) which adds a novel embedded deformation layer to a graph-convolutional mesh autoencoder. The embedded deformation layer (EDL) is a differentiable deformable geometric proxy which explicitly models point displacements of non-rigid deformations in a lower dimensional space and serves as a local rigidity regularizer. DEMEA decouples the parameterization of the deformation from the final mesh resolution since the deformation is defined over a lower dimensional embedded deformation graph. We perform a large-scale study on four different datasets of deformable objects. Reasoning about the local rigidity of meshes using EDL allows us to achieve higher-quality results for highly deformable objects, compared to directly regressing vertex positions. We demonstrate multiple applications of DEMEA, including non-rigid 3D reconstruction from depth and shading cues, non-rigid surface tracking, as well as the transfer of deformations over different meshes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Bagautdinov, T., Wu, C., Saragih, J., Sheikh, Y., Fua, P.: Modeling facial geometry using compositional vaes (2018) Bagautdinov, T., Wu, C., Saragih, J., Sheikh, Y., Fua, P.: Modeling facial geometry using compositional vaes (2018)
3.
Zurück zum Zitat Bednařík, J., Fua, P., Salzmann, M.: Learning to reconstruct texture-less deformable surfaces. In: International Conference on 3D Vision (3DV) (2018) Bednařík, J., Fua, P., Salzmann, M.: Learning to reconstruct texture-less deformable surfaces. In: International Conference on 3D Vision (3DV) (2018)
4.
Zurück zum Zitat Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Computer Vision and Pattern Recognition (CVPR) (2017) Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Computer Vision and Pattern Recognition (CVPR) (2017)
5.
Zurück zum Zitat Boscaini, D., Masci, J., Rodoià, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: International Conference on Neural Information Processing Systems (NIPS) (2016) Boscaini, D., Masci, J., Rodoià, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: International Conference on Neural Information Processing Systems (NIPS) (2016)
6.
Zurück zum Zitat Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: International Conference on Computer Vision (ICCV) (2019) Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: International Conference on Computer Vision (ICCV) (2019)
7.
Zurück zum Zitat Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2013) Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2013)
9.
Zurück zum Zitat Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: International Conference on Neural Information Processing Systems (NIPS) (2016) Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: International Conference on Neural Information Processing Systems (NIPS) (2016)
10.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR) (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR) (2009)
11.
Zurück zum Zitat Fuentes-Jimenez, D., Casillas-Perez, D., Pizarro, D., Collins, T., Bartoli, A.: Deep Shape-from-Template: Wide-Baseline, Dense and Fast Registration and Deformable Reconstruction from a Single Image. arXiv e-prints (2018) Fuentes-Jimenez, D., Casillas-Perez, D., Pizarro, D., Collins, T., Bartoli, A.: Deep Shape-from-Template: Wide-Baseline, Dense and Fast Registration and Deformable Reconstruction from a Single Image. arXiv e-prints (2018)
12.
Zurück zum Zitat Gao, L., Yang, J., Qiao, Y.L., Lai, Y.K., Rosin, P.L., Xu, W., Xia, S.: Automatic unpaired shape deformation transfer. ACM Trans. Graph. (TOG) 37(6), 1–15 (2018)CrossRef Gao, L., Yang, J., Qiao, Y.L., Lai, Y.K., Rosin, P.L., Xu, W., Xia, S.: Automatic unpaired shape deformation transfer. ACM Trans. Graph. (TOG) 37(6), 1–15 (2018)CrossRef
13.
Zurück zum Zitat Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH (1997) Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH (1997)
14.
Zurück zum Zitat Golyanik, V., Shimada, S., Varanasi, K., Stricker, D.: Hdm-net: monocular non-rigid 3D reconstruction with learned deformation model. In: International Conference on Virtual Reality and Augmented Reality (EuroVR) (2018) Golyanik, V., Shimada, S., Varanasi, K., Stricker, D.: Hdm-net: monocular non-rigid 3D reconstruction with learned deformation model. In: International Conference on Virtual Reality and Augmented Reality (EuroVR) (2018)
15.
Zurück zum Zitat Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Computer Vision and Pattern Recognition (CVPR) (2018) Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Computer Vision and Pattern Recognition (CVPR) (2018)
16.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2016)
17.
Zurück zum Zitat Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)MathSciNetCrossRef Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)MathSciNetCrossRef
19.
Zurück zum Zitat Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: European Conference on Computer Vision (ECCV) (2018) Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: European Conference on Computer Vision (ECCV) (2018)
20.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
21.
Zurück zum Zitat Kurenkov, A., et al.: Deformnet: Free-form deformation network for 3D shape reconstruction from a single image. In: Winter Conference on Applications of Computer Vision (WACV) (2018) Kurenkov, A., et al.: Deformnet: Free-form deformation network for 3D shape reconstruction from a single image. In: Winter Conference on Applications of Computer Vision (WACV) (2018)
22.
Zurück zum Zitat Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. In: ACM SIGGRAPH Asia (2009) Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. In: ACM SIGGRAPH Asia (2009)
23.
Zurück zum Zitat Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Computer Vision and Pattern Recognition (CVPR) (2018) Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Computer Vision and Pattern Recognition (CVPR) (2018)
24.
Zurück zum Zitat Loper, M., Mahmood, N., Black, M.J.: Mosh: motion and shape capture from sparse markers. ACM Trans. Graph. (TOG) 33, 1–13 (2014)CrossRef Loper, M., Mahmood, N., Black, M.J.: Mosh: motion and shape capture from sparse markers. ACM Trans. Graph. (TOG) 33, 1–13 (2014)CrossRef
25.
Zurück zum Zitat Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34, 1–16 (2015)CrossRef Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34, 1–16 (2015)CrossRef
26.
Zurück zum Zitat Malik, J., et al.: Deephps: end-to-end estimation of 3D hand pose and shape by learning from synthetic depth. In: International Conference on 3D Vision (3DV) (2018) Malik, J., et al.: Deephps: end-to-end estimation of 3D hand pose and shape by learning from synthetic depth. In: International Conference on 3D Vision (3DV) (2018)
27.
Zurück zum Zitat Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: International Conference on Computer Vision Workshop (ICCVW) (2015) Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: International Conference on Computer Vision Workshop (ICCVW) (2015)
28.
Zurück zum Zitat Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Computer Vision and Pattern Recognition (CVPR) (2017) Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Computer Vision and Pattern Recognition (CVPR) (2017)
29.
Zurück zum Zitat Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning (ICML) (2016) Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning (ICML) (2016)
30.
Zurück zum Zitat Pumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., Moreno-Noguer, F.: Geometry-aware network for non-rigid shape prediction from a single view. In: Computer Vision and Pattern Recognition (CVPR) (2018) Pumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., Moreno-Noguer, F.: Geometry-aware network for non-rigid shape prediction from a single view. In: Computer Vision and Pattern Recognition (CVPR) (2018)
31.
Zurück zum Zitat Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: European Conference on Computer Vision (ECCV) (2018) Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: European Conference on Computer Vision (ECCV) (2018)
32.
Zurück zum Zitat Shimada, S., Golyanik, V., Theobalt, C., Stricker, D.: IsMo-GAN: adversarial learning for monocular non-rigid 3D reconstruction. In: Computer Vision and Pattern Recognition Workshops (CVPRW) (2019) Shimada, S., Golyanik, V., Theobalt, C., Stricker, D.: IsMo-GAN: adversarial learning for monocular non-rigid 3D reconstruction. In: Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)
33.
Zurück zum Zitat Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: Surfnet: generating 3D shape surfaces using deep residual networks. In: Computer Vision and Pattern Recognition (CVPR) (2017) Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: Surfnet: generating 3D shape surfaces using deep residual networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)
34.
Zurück zum Zitat Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Eurographics Symposium on Geometry Processing (SGP) (2007) Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Eurographics Symposium on Geometry Processing (SGP) (2007)
35.
Zurück zum Zitat Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. In: ACM SIGGRAPH (2007) Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. In: ACM SIGGRAPH (2007)
36.
Zurück zum Zitat Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: Computer Vision and Pattern Recognition (CVPR) (2018) Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: Computer Vision and Pattern Recognition (CVPR) (2018)
37.
Zurück zum Zitat Tan, Q., Gao, L., Lai, Y.K., Yang, J., Xia, S.: Mesh-based autoencoders for localized deformation component analysis. In: AAAI Conference on Artificial Intelligence (AAAI) (2018) Tan, Q., Gao, L., Lai, Y.K., Yang, J., Xia, S.: Mesh-based autoencoders for localized deformation component analysis. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
38.
Zurück zum Zitat Verma, N., Boyer, E., Verbeek, J.: FeaStNet: Feature-steered graph convolutions for 3D shape analysis. In: Computer Vision and Pattern Recognition (CVPR) (2018) Verma, N., Boyer, E., Verbeek, J.: FeaStNet: Feature-steered graph convolutions for 3D shape analysis. In: Computer Vision and Pattern Recognition (CVPR) (2018)
39.
Zurück zum Zitat Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: European Conference on Computer Vision (ECCV) (2018) Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: European Conference on Computer Vision (ECCV) (2018)
40.
Zurück zum Zitat Yi, L., Su, H., Guo, X., Guibas, L.: Syncspeccnn: synchronized spectral CNN for 3D shape segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017) Yi, L., Su, H., Guo, X., Guibas, L.: Syncspeccnn: synchronized spectral CNN for 3D shape segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)
41.
Zurück zum Zitat Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (TOG) 33, 1–12 (2014)CrossRef Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (TOG) 33, 1–12 (2014)CrossRef
Metadaten
Titel
DEMEA: Deep Mesh Autoencoders for Non-rigidly Deforming Objects
verfasst von
Edgar Tretschk
Ayush Tewari
Michael Zollhöfer
Vladislav Golyanik
Christian Theobalt
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-58548-8_35

Premium Partner