Skip to main content

2020 | OriginalPaper | Buchkapitel

From Checking to Inference: Actual Causality Computations as Optimization Problems

verfasst von : Amjad Ibrahim, Alexander Pretschner

Erschienen in: Automated Technology for Verification and Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Actual causality is increasingly well understood. Recent formal approaches, proposed by Halpern and Pearl, have made this concept mature enough to be amenable to automated reasoning. Actual causality is especially vital for building accountable, explainable systems. Among other reasons, causality reasoning is computationally hard due to the requirements of counterfactuality and the minimality of causes. Previous approaches presented either inefficient or restricted, and domain-specific, solutions to the problem of automating causality reasoning. In this paper, we present a novel approach to formulate different notions of causal reasoning, over binary acyclic models, as optimization problems, based on quantifiable notions within counterfactual computations. We contribute and compare two compact, non-trivial, and sound integer linear programming (ILP) and Maximum Satisfiability (MaxSAT) encodings to check causality. Given a candidate cause, both approaches identify what a minimal cause is. Also, we present an ILP encoding to infer causality without requiring a candidate cause. We show that both notions are efficiently automated. Using models with more than 8000 variables, checking is computed in a matter of seconds, with MaxSAT outperforming ILP in many cases. In contrast, inference is computed in a matter of minutes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Their idea is often motivated with an example of 11 voters that can vote for Suzy or Billy. If Suzy wins 6–5, we can show that each Suzy voter is a cause of her winning. If Suzy wins 11–0, then each subset of size six of the voters is a cause. The authors argue that in 11–0 scenario, “a voter feels less responsible” compared to 6–5 situation.
 
3
Arguably, the (geodesic) distance between the cause and effect nodes in the graph, can be taken into consideration. In this paper, we do not consider this issue.
 
4
Machine-readable models and their description available at https://​git.​io/​Jf8iH.
 
Literatur
1.
Zurück zum Zitat Aleksandrowicz, G., Chockler, H., Halpern, J.Y., Ivrii, A.: The computational complexity of structure-based causality. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014) Aleksandrowicz, G., Chockler, H., Halpern, J.Y., Ivrii, A.: The computational complexity of structure-based causality. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)
2.
Zurück zum Zitat Bacchus, F., Järvisalo, M., Martins, R., et al.: MaxSAT evaluation 2018 (2018) Bacchus, F., Järvisalo, M., Martins, R., et al.: MaxSAT evaluation 2018 (2018)
3.
Zurück zum Zitat Bacchus, F., Narodytska, N.: Cores in core based MaxSAT algorithms: an analysis. In: International Conference on Theory and Applications of Satisfiability Testing (2014) Bacchus, F., Narodytska, N.: Cores in core based MaxSAT algorithms: an analysis. In: International Conference on Theory and Applications of Satisfiability Testing (2014)
4.
Zurück zum Zitat Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality checking using bounded model checking. In: Model Checking Software - 22nd International Symposium, SPIN (2015) Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality checking using bounded model checking. In: Model Checking Software - 22nd International Symposium, SPIN (2015)
5.
Zurück zum Zitat Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counter examples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)CrossRef Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counter examples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)CrossRef
7.
Zurück zum Zitat Cheliyan, A.S., Bhattacharyya, S.K.: Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J. Ocean Eng. Sci. 3, 38–48 (2018) Cheliyan, A.S., Bhattacharyya, S.K.: Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J. Ocean Eng. Sci. 3, 38–48 (2018)
9.
Zurück zum Zitat Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification? ACM Trans. Comput. Logic (TOCL) 9(3), 20 (2008)MathSciNetCrossRef Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification? ACM Trans. Comput. Logic (TOCL) 9(3), 20 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Feigenbaum, J., Hendler, J.A., Jaggard, A.D., Weitzner, D.J., Wright, R.N.: Accountability and deterrence in online life. In: Web Science (2011) Feigenbaum, J., Hendler, J.A., Jaggard, A.D., Weitzner, D.J., Wright, R.N.: Accountability and deterrence in online life. In: Web Science (2011)
11.
Zurück zum Zitat Gurobi, L.: Optimization: Gurobi optimizer reference manual (2018) Gurobi, L.: Optimization: Gurobi optimizer reference manual (2018)
12.
Zurück zum Zitat Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI. pp. 3022–3033 (2015) Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI. pp. 3022–3033 (2015)
13.
14.
Zurück zum Zitat Hopkins, M.: Strategies for determining causes of events. In: AAAI/IAAI (2002) Hopkins, M.: Strategies for determining causes of events. In: AAAI/IAAI (2002)
15.
Zurück zum Zitat Hume, D.: An Enquiry Concerning Human Understanding (1748) Hume, D.: An Enquiry Concerning Human Understanding (1748)
16.
Zurück zum Zitat Ibrahim, A., Kacianka, S., Pretschner, A., Hartsell, C., Karsai, G.: Practical causal models for cyber-physical systems. In: NASA Formal Methods, pp. 211–227 (2019) Ibrahim, A., Kacianka, S., Pretschner, A., Hartsell, C., Karsai, G.: Practical causal models for cyber-physical systems. In: NASA Formal Methods, pp. 211–227 (2019)
17.
Zurück zum Zitat Ibrahim, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A.: Actual causality canvas: A general framework for explanation-based socio-technical constructs. In: ECAI 2020, the 24th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, IOS Press (2020) Ibrahim, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A.: Actual causality canvas: A general framework for explanation-based socio-technical constructs. In: ECAI 2020, the 24th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, IOS Press (2020)
18.
Zurück zum Zitat Ibrahim, A., Rehwald, S., Pretschner, A.: Efficient checking of actual causality with sat solving. Eng. Secure Dependable Softw. Syst. 53, 241 (2019) Ibrahim, A., Rehwald, S., Pretschner, A.: Efficient checking of actual causality with sat solving. Eng. Secure Dependable Softw. Syst. 53, 241 (2019)
21.
Zurück zum Zitat Künnemann, R., Esiyok, I., Backes, M.: Automated verification of accountability in security protocols. CoRR abs/1805.10891 (2018) Künnemann, R., Esiyok, I., Backes, M.: Automated verification of accountability in security protocols. CoRR abs/1805.10891 (2018)
22.
Zurück zum Zitat Ladkin, P., Loer, K.: Why-because analysis: Formal reasoning about incidents. Bielefeld, Germany, Document RVS-Bk-98-01, Technischen Fakultat der Universitat Bielefeld, Germany (1998) Ladkin, P., Loer, K.: Why-because analysis: Formal reasoning about incidents. Bielefeld, Germany, Document RVS-Bk-98-01, Technischen Fakultat der Universitat Bielefeld, Germany (1998)
24.
25.
Zurück zum Zitat Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631 (2009) Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631 (2009)
26.
Zurück zum Zitat Li, R., Zhou, D., Du, D.: Satisfiability and integer programming as complementary tools. In: Proceedings of the 2004 Asia and South Pacific Design Automation Conference, pp. 879–882. IEEE Press (2004) Li, R., Zhou, D., Du, D.: Satisfiability and integer programming as complementary tools. In: Proceedings of the 2004 Asia and South Pacific Design Automation Conference, pp. 879–882. IEEE Press (2004)
28.
Zurück zum Zitat Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010) Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010)
29.
Zurück zum Zitat Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2018)MathSciNetCrossRef Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat Pearl, J.: Causation, action and counterfactuals. In: Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge, pp. 51–73 (1996) Pearl, J.: Causation, action and counterfactuals. In: Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge, pp. 51–73 (1996)
32.
Zurück zum Zitat Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)MathSciNetCrossRef Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)MathSciNetCrossRef
33.
Zurück zum Zitat Salimi, B., Bertossi, L.: From causes for database queries to repairs and model-based diagnosis and back (2014) Salimi, B., Bertossi, L.: From causes for database queries to repairs and model-based diagnosis and back (2014)
35.
Zurück zum Zitat Zhao, W., Wu, W.: ASIG: an all-solution SAT solver for CNF formulas. In: 11th International Conference on Computer-Aided Design and Computer Graphics (2009) Zhao, W., Wu, W.: ASIG: an all-solution SAT solver for CNF formulas. In: 11th International Conference on Computer-Aided Design and Computer Graphics (2009)
Metadaten
Titel
From Checking to Inference: Actual Causality Computations as Optimization Problems
verfasst von
Amjad Ibrahim
Alexander Pretschner
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59152-6_19

Premium Partner