Skip to main content

2021 | OriginalPaper | Buchkapitel

Multi-party Threshold Private Set Intersection with Sublinear Communication

verfasst von : Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, Peter Rindal

Erschienen in: Public-Key Cryptography – PKC 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In multi-party threshold private set intersection (PSI), n parties each with a private set wish to compute the intersection of their sets if the intersection is sufficiently large. Previously, Ghosh and Simkin (CRYPTO 2019) studied this problem for the two-party case and demonstrated interesting lower and upper bounds on the communication complexity. In this work, we investigate the communication complexity of the multi-party setting \((n\ge 2)\). We consider two functionalities for multi-party threshold PSI. In the first, parties learn the intersection if each of their sets and the intersection differ by at most T. In the second functionality, parties learn the intersection if the union of all their sets and the intersection differ by at most T.
For both functionalities, we show that any protocol must have communication complexity \(\varOmega (nT)\). We build protocols with a matching upper bound of O(nT) communication complexity for both functionalities assuming threshold FHE. We also construct a computationally more efficient protocol for the second functionality with communication complexity \(\widetilde{O}(nT)\) under a weaker assumption of threshold additive homomorphic encryption. As a direct implication, we solve one of the open problems in the work of Ghosh and Simkin (CRYPTO 2019) by designing a two-party protocol with communication cost \(\widetilde{O}(T)\) from assumptions weaker than FHE.
As a consequence of our results, we achieve the first “regular” multi-party PSI protocol where the communication complexity only grows with the size of the set difference and does not depend on the size of the input sets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(\widetilde{O}(\cdot )\) hides \(\mathsf {polylog}\) factors. All the upper bounds omit a \(\mathsf {poly}(\lambda )\) factor where \(\lambda \) is the security parameter.
 
2
By “regular” PSI, we refer to the standard notion of PSI without threshold.
 
3
A rational function is a fraction of two polynomials. We refer to Minskey et al. [MTZ03] for details on rational function interpolation over a field. Also, we note that monic polynomials can be interpolated with 2T evaluation but we use \(2T+1\) for consistency with our other protocols.
 
4
In fact, this subtle issue was initially overlooked by [GS19b] in their recent update of the multi-party protocol. It has subsequently been fixed after we notified them.
 
5
We define the communication complexity of a party \(P_i\) in any protocol execution as the complexity of all the communication that \(P_i\) is involved in. That is, the complexity of the messages both incoming to and outgoing from \(P_i\).
 
Literatur
[AIK05]
Zurück zum Zitat Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: CCC (2005) Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: CCC (2005)
[BDP21]
Zurück zum Zitat Branco, P., Döttling, N., Pu, S.: Multiparty cardinality testing for threshold private set intersection. In: PKC (2021) Branco, P., Döttling, N., Pu, S.: Multiparty cardinality testing for threshold private set intersection. In: PKC (2021)
[Ben94]
Zurück zum Zitat Benaloh, J.: Dense probabilistic encryption May 1994 Benaloh, J.: Dense probabilistic encryption May 1994
[BFK+19]
Zurück zum Zitat Badrinarayanan, S., Fernando, R., Koppula, V., Sahai, A., Waters, B.: Output compression, MPC, and IO for turing machines. In: ASIACRYPT (2019) Badrinarayanan, S., Fernando, R., Koppula, V., Sahai, A., Waters, B.: Output compression, MPC, and IO for turing machines. In: ASIACRYPT (2019)
[BGG+18]
[BGY80]
Zurück zum Zitat Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of padé approximants. J. Algorithms 1(3), 259–295 (1980)MathSciNetCrossRef Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of padé approximants. J. Algorithms 1(3), 259–295 (1980)MathSciNetCrossRef
[BO15]
Zurück zum Zitat Braverman, M., Oshman, R.: On information complexity in the broadcast model. In: PODC (2015) Braverman, M., Oshman, R.: On information complexity in the broadcast model. In: PODC (2015)
[BPSW07]
Zurück zum Zitat Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS (2007) Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS (2007)
[DCT10]
Zurück zum Zitat De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: FC (2010) De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: FC (2010)
[DCW13]
Zurück zum Zitat Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: CCS (2013) Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: CCS (2013)
[FH96]
Zurück zum Zitat Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation. J. Cryptol. 9, 217–232 (1996)MathSciNetCrossRef Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation. J. Cryptol. 9, 217–232 (1996)MathSciNetCrossRef
[GJR10]
Zurück zum Zitat Grigorescu, E., Jung, K., Rubinfeld, R.: A local decision test for sparse polynomials. Inf. Process. Lett. 110(20), 898–901 (2010)MathSciNetCrossRef Grigorescu, E., Jung, K., Rubinfeld, R.: A local decision test for sparse polynomials. Inf. Process. Lett. 110(20), 898–901 (2010)MathSciNetCrossRef
[GS19b]
Zurück zum Zitat Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection (2019). ia.cr/2019/175 Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection (2019). ia.cr/2019/175
[HFH99]
Zurück zum Zitat Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce (1999) Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce (1999)
[HOS17]
Zurück zum Zitat Per, A., Hallgren, C.O., Sabelfeld, A.: Privacy-preserving ridesharing. In: CSF, Privatepool (2017) Per, A., Hallgren, C.O., Sabelfeld, A.: Privacy-preserving ridesharing. In: CSF, Privatepool (2017)
[HV17]
Zurück zum Zitat Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: PKC (2017) Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: PKC (2017)
[HW15]
Zurück zum Zitat Hubáček, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: ITCS (2015) Hubáček, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: ITCS (2015)
[IKN+17]
Zurück zum Zitat Ion, M., et al.: Private intersection-sum protocol with applications to attributing aggregate ad conversions (2017). ia.cr/2017/738 Ion, M., et al.: Private intersection-sum protocol with applications to attributing aggregate ad conversions (2017). ia.cr/2017/738
[KKRT16]
Zurück zum Zitat Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: CCS (2016) Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: CCS (2016)
[KMP+17]
Zurück zum Zitat Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: CCS (2017) Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: CCS (2017)
[KMWF07]
Zurück zum Zitat Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using linearly recurrent sequences. In: TCC (2007) Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using linearly recurrent sequences. In: TCC (2007)
[MTZ03]
Zurück zum Zitat Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Inf. Theory 49, 2213–2218 (2003)MathSciNetCrossRef Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Inf. Theory 49, 2213–2218 (2003)MathSciNetCrossRef
[MZ17]
Zurück zum Zitat Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE S and P (2017) Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE S and P (2017)
[NMH+10]
Zurück zum Zitat Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: finding P2P bots with structured graph analysis. In: USENIX security symposium (2010) Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: finding P2P bots with structured graph analysis. In: USENIX security symposium (2010)
[OOS16]
Zurück zum Zitat Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-n OT extension with application to private set intersection. In: CT-RSA (2016) Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-n OT extension with application to private set intersection. In: CT-RSA (2016)
[PSSZ15]
Zurück zum Zitat Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In USENIX (2015) Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In USENIX (2015)
[PSZ14]
Zurück zum Zitat Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX (2014) Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX (2014)
[RR17]
Zurück zum Zitat Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: CCS (2017) Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: CCS (2017)
[TPKC07]
Zurück zum Zitat Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient dna searching through oblivious automata. In: CCS (2007) Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient dna searching through oblivious automata. In: CCS (2007)
[TY90]
Zurück zum Zitat Thull, K., Yap, C.: A unified approach to HGCD algorithms for polynomials and integers. Manuscript (1990) Thull, K., Yap, C.: A unified approach to HGCD algorithms for polynomials and integers. Manuscript (1990)
[Yao86]
Zurück zum Zitat Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986) Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)
[ZC18]
Zurück zum Zitat Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving matchmaking via threshold PSI (2018). ia.cr/2018/184 Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving matchmaking via threshold PSI (2018). ia.cr/2018/184
Metadaten
Titel
Multi-party Threshold Private Set Intersection with Sublinear Communication
verfasst von
Saikrishna Badrinarayanan
Peihan Miao
Srinivasan Raghuraman
Peter Rindal
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75248-4_13

Premium Partner