Skip to main content

2021 | OriginalPaper | Buchkapitel

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs

verfasst von : Naganand Yadati, Tingran Gao, Shahab Asoodeh, Partha Talukdar, Anand Louis

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph-based semi-supervised learning (SSL) assigns labels to initially unlabelled vertices in a graph. Graph neural networks (GNNs), esp. graph convolutional networks (GCNs), are at the core of the current-state-of-the art models for graph-based SSL problems. GCNs have recently been extended to undirected hypergraphs in which relationships go beyond pairwise associations. There is a need to extend GCNs to directed hypergraphs which represent more expressively many real-world data sets such as co-authorship networks and recommendation networks. Furthermore, labels of interest in these applications are most naturally represented by probability distributions. Motivated by these needs, in this paper, we propose a novel GNN-based method for directed hypergraphs, called Directed Hypergraph Network (DHN) for semi-supervised learning of probability distributions (Soft SSL). A key contribution of this paper is to establish generalisation error bounds for GNN-based soft SSL. In fact, our theoretical analysis is quite general and has straightforward applicability to DHN as well as to existing hypergraph methods. We demonstrate the effectiveness of our method through detailed experimentation on real-world datasets. We have made the code available.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bai, S., Zhang, F., Torr, P.H.S.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef Bai, S., Zhang, F., Torr, P.H.S.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef
2.
Zurück zum Zitat Chan, T.H., Liang, Z.: Generalizing the hypergraph laplacian via a diffusion process with mediators. In: COCOON (2018) Chan, T.H., Liang, Z.: Generalizing the hypergraph laplacian via a diffusion process with mediators. In: COCOON (2018)
4.
Zurück zum Zitat Corduneanu, A., Jaakkola, T.S.: Distributed information regularization on graphs. In: NIPS, pp. 297–304. MIT Press (2005) Corduneanu, A., Jaakkola, T.S.: Distributed information regularization on graphs. In: NIPS, pp. 297–304. MIT Press (2005)
5.
Zurück zum Zitat Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: NIPS. Curran Associates, Inc. (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: NIPS. Curran Associates, Inc. (2013)
6.
7.
Zurück zum Zitat Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI (2019) Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI (2019)
8.
Zurück zum Zitat Frogner, C., Mirzazadeh, F., Solomon, J.: Learning entropic wasserstein embeddings. In: ICLR (2019) Frogner, C., Mirzazadeh, F., Solomon, J.: Learning entropic wasserstein embeddings. In: ICLR (2019)
9.
Zurück zum Zitat Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2–3), 177–201 (1993)MathSciNetCrossRef Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2–3), 177–201 (1993)MathSciNetCrossRef
10.
Zurück zum Zitat Gao, T., Asoodeh, S., Huang, Y., Evans, J.: Wasserstein soft label propagation on hypergraphs: algorithm and generalization error bounds. In: AAAI (2019) Gao, T., Asoodeh, S., Huang, Y., Evans, J.: Wasserstein soft label propagation on hypergraphs: algorithm and generalization error bounds. In: AAAI (2019)
11.
Zurück zum Zitat Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML (2017)
12.
Zurück zum Zitat Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS. Curran Associates, Inc. (2017) Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS. Curran Associates, Inc. (2017)
13.
Zurück zum Zitat Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020) Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)
14.
Zurück zum Zitat Han, J., Cheng, B., Wang, X.: Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), pp. 3615–3621 (2020) Han, J., Cheng, B., Wang, X.: Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), pp. 3615–3621 (2020)
15.
Zurück zum Zitat Hein, M., Setzer, S., Jost, L., Rangapuram, S.S.: The total variation on hypergraphs - learning on hypergraphs revisited. In: NIPS. Curran Associates, Inc. (2013) Hein, M., Setzer, S., Jost, L., Rangapuram, S.S.: The total variation on hypergraphs - learning on hypergraphs revisited. In: NIPS. Curran Associates, Inc. (2013)
16.
Zurück zum Zitat Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
17.
Zurück zum Zitat Liao, R., Zhao, Z., Urtasun, R., Zemel, R.S.: Lanczosnet: multi-scale deep graph convolutional networks. In: ICLR (2019) Liao, R., Zhao, Z., Urtasun, R., Zemel, R.S.: Lanczosnet: multi-scale deep graph convolutional networks. In: ICLR (2019)
18.
Zurück zum Zitat Ma, Y., Tang, J.: Deep learning on graphs. Cambridge University Press (2020) Ma, Y., Tang, J.: Deep learning on graphs. Cambridge University Press (2020)
19.
Zurück zum Zitat Muzellec, B., Cuturi, M.: Generalizing point embeddings using the wasserstein space of elliptical distributions. In: NeurIPS. Curran Associates, Inc. (2018) Muzellec, B., Cuturi, M.: Generalizing point embeddings using the wasserstein space of elliptical distributions. In: NeurIPS. Curran Associates, Inc. (2018)
20.
Zurück zum Zitat Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Wasserstein propagation for semi-supervised learning. In: ICML (2014) Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Wasserstein propagation for semi-supervised learning. In: ICML (2014)
21.
Zurück zum Zitat Subramanya, A., Bilmes, J.: Semi-supervised learning with measure propagation. J. Mach. Learn. Res. 12, 3311–3370 (2011)MathSciNetMATH Subramanya, A., Bilmes, J.: Semi-supervised learning with measure propagation. J. Mach. Learn. Res. 12, 3311–3370 (2011)MathSciNetMATH
22.
Zurück zum Zitat Subramanya, A., Talukdar, P.P.: Graph-based semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 8(4), 1–125 (2014) Subramanya, A., Talukdar, P.P.: Graph-based semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 8(4), 1–125 (2014)
23.
Zurück zum Zitat Tsuda, K.: Propagating distributions on a hypergraph by dual information regularization. In: ICML (2005) Tsuda, K.: Propagating distributions on a hypergraph by dual information regularization. In: ICML (2005)
24.
Zurück zum Zitat Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
25.
Zurück zum Zitat Verma, S., Zhang, Z.L.: Stability and generalization of graph convolutional neural networks. In: KDD (2019) Verma, S., Zhang, Z.L.: Stability and generalization of graph convolutional neural networks. In: KDD (2019)
26.
Zurück zum Zitat Villani, C.: Topics in Optimal Transportation Theory (2003) Villani, C.: Topics in Optimal Transportation Theory (2003)
27.
Zurück zum Zitat Villani, C.: Optimal Transport - Old and New. vol. 338. Springer-Verlag (2008) Villani, C.: Optimal Transport - Old and New. vol. 338. Springer-Verlag (2008)
28.
Zurück zum Zitat Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML (2019) Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML (2019)
29.
Zurück zum Zitat Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method of training graph convolutional networks on hypergraphs. In: NeurIPS. Curran Associates, Inc. (2019) Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method of training graph convolutional networks on hypergraphs. In: NeurIPS. Curran Associates, Inc. (2019)
30.
Zurück zum Zitat Zhang, C., Hu, S., Tang, Z.G., Chan, T.H.H.: Re-revisiting learning on hypergraphs: confidence interval and subgradient method. In: ICML (2017) Zhang, C., Hu, S., Tang, Z.G., Chan, T.H.H.: Re-revisiting learning on hypergraphs: confidence interval and subgradient method. In: ICML (2017)
31.
Zurück zum Zitat Zhang, R., Zou, Y., Ma, J.: Hyper-sagnn: a self-attention based graph neural network for hypergraphs. In: International Conference on Learning Representations (ICLR) (2020) Zhang, R., Zou, Y., Ma, J.: Hyper-sagnn: a self-attention based graph neural network for hypergraphs. In: International Conference on Learning Representations (ICLR) (2020)
32.
Zurück zum Zitat Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS. MIT Press (2007) Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS. MIT Press (2007)
Metadaten
Titel
Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs
verfasst von
Naganand Yadati
Tingran Gao
Shahab Asoodeh
Partha Talukdar
Anand Louis
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75762-5_36

Premium Partner