Skip to main content

2022 | OriginalPaper | Buchkapitel

Space–Time Flow Computation with Contact Between the Moving Solid Surfaces

verfasst von : Kenji Takizawa, Takuya Terahara, Tayfun E. Tezduyar

Erschienen in: Current Trends and Open Problems in Computational Mechanics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In computation of flow problems with moving boundaries and interfaces, including fluid–structure interaction, moving the fluid mechanics mesh to follow the fluid–solid interface enables mesh-resolution control near the interface. Therefore moving-mesh methods, such as the Space–Time Variational Multiscale (ST-VMS) method, enable high-resolution boundary-layer representation near fluid–solid interfaces and thus higher accuracy in such critical flow regions. In flow problems with contact between solid surfaces, until recently, one had to either give up on representing the actual contact and leave a small gap or give up on using a moving-mesh method and thus give up on having high-fidelity flow solution near the solid surfaces. The ST Topology Change (ST-TC) method changed all that. Now we can both represent the actual contact and have high-fidelity flow solution near the solid surfaces. With the ST-VMS, which serves as the core method, and the ST-TC and two other special methods, the ST Slip Interface method and ST Isogeometric Analysis, we have created a powerful computational framework. The new framework is enabling high-fidelity computational flow analysis of some of the most complex problems, such as the ventricle-valve-aorta sequence. This chapter is a description and demonstration of that framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Takizawa, K., & Tezduyar, T. E. (2011). Multiscale space-time fluid-structure interaction techniques. Computational Mechanics, 48, 247–267.MathSciNetCrossRef Takizawa, K., & Tezduyar, T. E. (2011). Multiscale space-time fluid-structure interaction techniques. Computational Mechanics, 48, 247–267.MathSciNetCrossRef
2.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time interface-tracking with topology change (ST-TC). Computational Mechanics, 54, 955–971.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time interface-tracking with topology change (ST-TC). Computational Mechanics, 54, 955–971.MathSciNetCrossRef
3.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Terahara, T., & Sasaki, T. (2017). Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Computers and Fluids, 158, 176–188.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., Terahara, T., & Sasaki, T. (2017). Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Computers and Fluids, 158, 176–188.MathSciNetCrossRef
4.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., & Montel, K. (2015). Space-time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 25, 2377–2406.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., & Montel, K. (2015). Space-time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 25, 2377–2406.MathSciNetCrossRef
5.
Zurück zum Zitat Takizawa, K., Henicke, B., Puntel, A., Spielman, T., & Tezduyar, T. E. (2012). Space-time computational techniques for the aerodynamics of flapping wings. Journal of Applied Mechanics, 79, 010903. Takizawa, K., Henicke, B., Puntel, A., Spielman, T., & Tezduyar, T. E. (2012). Space-time computational techniques for the aerodynamics of flapping wings. Journal of Applied Mechanics, 79, 010903.
6.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Otoguro, Y., Terahara, T., Kuraishi, T., & Hattori, H. (2017). Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Computers and Fluids, 142, 15–20.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., Otoguro, Y., Terahara, T., Kuraishi, T., & Hattori, H. (2017). Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Computers and Fluids, 142, 15–20.MathSciNetCrossRef
7.
Zurück zum Zitat Tezduyar, T. E. (1992). Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28, 1–44.MathSciNetMATH Tezduyar, T. E. (1992). Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28, 1–44.MathSciNetMATH
8.
Zurück zum Zitat Brooks, A. N., & Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32, 199–259.MathSciNetCrossRef Brooks, A. N., & Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32, 199–259.MathSciNetCrossRef
9.
Zurück zum Zitat Hughes, T. J. R. (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127, 387–401.MathSciNetCrossRef Hughes, T. J. R. (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127, 387–401.MathSciNetCrossRef
10.
Zurück zum Zitat Tezduyar, T. E., & Takizawa, K. (2019). Space-time computations in practical engineering applications: A summary of the 25-year history. Computational Mechanics, 63, 747–753.CrossRef Tezduyar, T. E., & Takizawa, K. (2019). Space-time computations in practical engineering applications: A summary of the 25-year history. Computational Mechanics, 63, 747–753.CrossRef
11.
Zurück zum Zitat Bazilevs, Y., Takizawa, K., Tezduyar, T. E. (2013). Computational Fluid–Structure Interaction: Methods and Applications. Wiley. Bazilevs, Y., Takizawa, K., Tezduyar, T. E. (2013). Computational Fluid–Structure Interaction: Methods and Applications. Wiley.
12.
Zurück zum Zitat Bazilevs, Y., Calo, V. M., Hughes, T. J. R., & Zhang, Y. (2008). Isogeometric fluid-structure interaction: theory, algorithms, and computations. Computational Mechanics, 43, 3–37.MathSciNetCrossRef Bazilevs, Y., Calo, V. M., Hughes, T. J. R., & Zhang, Y. (2008). Isogeometric fluid-structure interaction: theory, algorithms, and computations. Computational Mechanics, 43, 3–37.MathSciNetCrossRef
13.
Zurück zum Zitat Bazilevs, Y., & Hughes, T. J. R. (2008). NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics, 43, 143–150.CrossRef Bazilevs, Y., & Hughes, T. J. R. (2008). NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics, 43, 143–150.CrossRef
14.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Asada, S., & Kuraishi, T. (2016). Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Computers and Fluids, 141, 124–134.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., Asada, S., & Kuraishi, T. (2016). Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Computers and Fluids, 141, 124–134.MathSciNetCrossRef
15.
Zurück zum Zitat Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195.MathSciNetCrossRef Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195.MathSciNetCrossRef
16.
Zurück zum Zitat Takizawa, K., & Tezduyar, T. E. (2014). Space-time computation techniques with continuous representation in time (ST-C). Computational Mechanics, 53, 91–99.MathSciNetCrossRef Takizawa, K., & Tezduyar, T. E. (2014). Space-time computation techniques with continuous representation in time (ST-C). Computational Mechanics, 53, 91–99.MathSciNetCrossRef
17.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., & Kuraishi, T. (2015). Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 25, 2227–2255.MathSciNetCrossRef Takizawa, K., Tezduyar, T. E., & Kuraishi, T. (2015). Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 25, 2227–2255.MathSciNetCrossRef
18.
Zurück zum Zitat Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Tire aerodynamics with actual tire geometry, road contact and tire deformation. Computational Mechanics, 63, 1165–1185.MathSciNetCrossRef Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Tire aerodynamics with actual tire geometry, road contact and tire deformation. Computational Mechanics, 63, 1165–1185.MathSciNetCrossRef
19.
Zurück zum Zitat Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Computational Mechanics, 64, 1699–1718.CrossRef Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Computational Mechanics, 64, 1699–1718.CrossRef
20.
Zurück zum Zitat Terahara, T., Takizawa, K., Tezduyar, T. E., Tsushima, A., & Shiozaki, K. (2020). Ventricle-valve-aorta flow analysis with the Space-Time Isogeometric Discretization and Topology Change. Computational Mechanics, 65, 1343–1363.MathSciNetCrossRef Terahara, T., Takizawa, K., Tezduyar, T. E., Tsushima, A., & Shiozaki, K. (2020). Ventricle-valve-aorta flow analysis with the Space-Time Isogeometric Discretization and Topology Change. Computational Mechanics, 65, 1343–1363.MathSciNetCrossRef
21.
Zurück zum Zitat Otoguro, Y., Takizawa, K., & Tezduyar, T. E. (2017). Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Computers and Fluids, 158, 189–200.MathSciNetCrossRef Otoguro, Y., Takizawa, K., & Tezduyar, T. E. (2017). Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Computers and Fluids, 158, 189–200.MathSciNetCrossRef
22.
Zurück zum Zitat Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., & Mittal, S. (1993). Parallel finite-element computation of 3D flows. Computer, 26(10), 27–36.CrossRef Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., & Mittal, S. (1993). Parallel finite-element computation of 3D flows. Computer, 26(10), 27–36.CrossRef
23.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Uchikawa, H., Terahara, T., Sasaki, T., Shiozaki, K.., Yoshida, A., Komiya, K., & Inoue, G. (2018). Aorta flow analysis and heart valve flow and structure analysis. In Tezduyar, T. E. ed., Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty – 2018, Modeling and Simulation in Science, Engineering and Technology, pp. 29–89. Springer. Takizawa, K., Tezduyar, T. E., Uchikawa, H., Terahara, T., Sasaki, T., Shiozaki, K.., Yoshida, A., Komiya, K., & Inoue, G. (2018). Aorta flow analysis and heart valve flow and structure analysis. In Tezduyar, T. E. ed., Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty – 2018, Modeling and Simulation in Science, Engineering and Technology, pp. 29–89. Springer.
Metadaten
Titel
Space–Time Flow Computation with Contact Between the Moving Solid Surfaces
verfasst von
Kenji Takizawa
Takuya Terahara
Tayfun E. Tezduyar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-87312-7_50

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.