Skip to main content

2022 | OriginalPaper | Buchkapitel

Smart System for Monitoring and Controlling of Agricultural Production by the IoT

verfasst von : Jamal Mabrouki, Karima Azoulay, Saloua Elfanssi, Loubna Bouhachlaf, Fatimazahra Mousli, Mourade Azrour, Souad El Hajjaji

Erschienen in: IoT and Smart Devices for Sustainable Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Internet of Things (IoT) is a system that allows physical objects that have computer processing and sensory communication systems to connect mutually and take advantage of some service on the Internet. In fact, the philosophy of adopting IoT is to make devices connected to the Internet, and users can access data more quickly. The wide spectrum of possible IoT applications includes the field of agriculture, for which significant exploitation of IoT is envisaged in the long term.
Furthermore, the advancements in the field of sensor technology provide us the opportunity to discover situations that were totally unachievable in earlier times. This has given us the idea to use IoT to design an innovative system for real-time farm monitoring and controlling. The planned solution concerns farmers and farm employees. In fact, it is capable to help them and make their work easier by controlling products remotely from time to time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.CrossRef L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.CrossRef
2.
Zurück zum Zitat F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.CrossRef F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.CrossRef
3.
Zurück zum Zitat L. Srivastava and T. Kelly, “The internet of things,” International Telecommunication Union, Tech. Rep, vol. 7, 2005. L. Srivastava and T. Kelly, “The internet of things,” International Telecommunication Union, Tech. Rep, vol. 7, 2005.
4.
Zurück zum Zitat B. N. Silva, M. Khan, and K. Han, “Internet of things: A comprehensive review of enabling technologies, architecture, and challenges,” IETE Technical review, vol. 35, no. 2, pp. 205–220, 2018.CrossRef B. N. Silva, M. Khan, and K. Han, “Internet of things: A comprehensive review of enabling technologies, architecture, and challenges,” IETE Technical review, vol. 35, no. 2, pp. 205–220, 2018.CrossRef
5.
Zurück zum Zitat Y. Liao, E. de F. R. Loures, and F. Deschamps, “Industrial Internet of Things: A systematic literature review and insights,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4515–4525, 2018.CrossRef Y. Liao, E. de F. R. Loures, and F. Deschamps, “Industrial Internet of Things: A systematic literature review and insights,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4515–4525, 2018.CrossRef
6.
Zurück zum Zitat M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture of Internet of Things,” in 2010 3rd international conference on advanced computer theory and engineering (ICACTE), 2010, vol. 5, pp. V5-484–V5-487. M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture of Internet of Things,” in 2010 3rd international conference on advanced computer theory and engineering (ICACTE), 2010, vol. 5, pp. V5-484–V5-487.
7.
Zurück zum Zitat F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.CrossRef F. Wortmann and K. Flüchter, “Internet of things,” Business & Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.CrossRef
8.
Zurück zum Zitat J. Mabrouki, M. Azrour, G. Fattah, D. Dhiba, and S. E. Hajjaji, “Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case,” Big Data Min. Anal., vol. 4, no. 1, pp. 10–17, Mar. 2021, doi: https://doi.org/10.26599/BDMA.2020.9020017. J. Mabrouki, M. Azrour, G. Fattah, D. Dhiba, and S. E. Hajjaji, “Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case,” Big Data Min. Anal., vol. 4, no. 1, pp. 10–17, Mar. 2021, doi: https://​doi.​org/​10.​26599/​BDMA.​2020.​9020017.
9.
Zurück zum Zitat J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S. E. Hajjaji, “IoT-based data logger for weather monitoring using Arduino-based wireless sensor networks with remote graphical application and alerts,” Big Data Min. Anal., vol. 4, no. 1, pp. 25–32, Mar. 2021, doi: https://doi.org/10.26599/BDMA.2020.9020018. J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S. E. Hajjaji, “IoT-based data logger for weather monitoring using Arduino-based wireless sensor networks with remote graphical application and alerts,” Big Data Min. Anal., vol. 4, no. 1, pp. 25–32, Mar. 2021, doi: https://​doi.​org/​10.​26599/​BDMA.​2020.​9020018.
10.
Zurück zum Zitat J. Mabrouki, M. Azrour, and S. El, “Use of Internet of Things for Monitoring and Evaluation water’s Quality: Comparative Study,” International Journal of Cloud Computing, 2021. J. Mabrouki, M. Azrour, and S. El, “Use of Internet of Things for Monitoring and Evaluation water’s Quality: Comparative Study,” International Journal of Cloud Computing, 2021.
11.
Zurück zum Zitat J. Mabrouki, M. Azrour, Y. Farhaoui, and S. El Hajjaji, “Intelligent System for Monitoring and Detecting Water Quality,” in Big Data and Networks Technologies, vol. 81, Y. Farhaoui, Ed. Cham: Springer International Publishing, 2020, pp. 172–182.CrossRef J. Mabrouki, M. Azrour, Y. Farhaoui, and S. El Hajjaji, “Intelligent System for Monitoring and Detecting Water Quality,” in Big Data and Networks Technologies, vol. 81, Y. Farhaoui, Ed. Cham: Springer International Publishing, 2020, pp. 172–182.CrossRef
12.
13.
18.
Zurück zum Zitat M. Zhang, M. Li, W. Wang, C. Liu, and H. Gao, “Temporal and spatial variability of soil moisture based on WSN,” Mathematical and Computer Modelling, vol. 58, no. 3–4, pp. 826–833, 2013.CrossRef M. Zhang, M. Li, W. Wang, C. Liu, and H. Gao, “Temporal and spatial variability of soil moisture based on WSN,” Mathematical and Computer Modelling, vol. 58, no. 3–4, pp. 826–833, 2013.CrossRef
19.
Zurück zum Zitat S. G. Galande, G. H. Agrawal, and S. B. Dighe, “Greenhouse Microclimatic Real-Time Monitoring with the Help of NPK Sensor,” International Journal of Emerging Trends in Science and Technology, vol. 2, no. 5, pp. 2511–2515, 2015. S. G. Galande, G. H. Agrawal, and S. B. Dighe, “Greenhouse Microclimatic Real-Time Monitoring with the Help of NPK Sensor,” International Journal of Emerging Trends in Science and Technology, vol. 2, no. 5, pp. 2511–2515, 2015.
20.
Zurück zum Zitat A. E. Douglas, “Strategies for enhanced crop resistance to insect pests,” Annual review of plant biology, vol. 69, pp. 637–660, 2018.CrossRef A. E. Douglas, “Strategies for enhanced crop resistance to insect pests,” Annual review of plant biology, vol. 69, pp. 637–660, 2018.CrossRef
21.
Zurück zum Zitat H. M. Jawad, R. Nordin, S. K. Gharghan, A. M. Jawad, and M. Ismail, “Energy-efficient wireless sensor networks for precision agriculture: A review,” Sensors, vol. 17, no. 8, p. 1781, 2017.CrossRef H. M. Jawad, R. Nordin, S. K. Gharghan, A. M. Jawad, and M. Ismail, “Energy-efficient wireless sensor networks for precision agriculture: A review,” Sensors, vol. 17, no. 8, p. 1781, 2017.CrossRef
22.
Zurück zum Zitat T.-K. Dao, T.-S. Pan, and J.-S. Pan, “A multi-objective optimal mobile robot path planning based on whale optimization algorithm,” in 2016 IEEE 13th International Conference on Signal Processing (ICSP), 2016, pp. 337–342. T.-K. Dao, T.-S. Pan, and J.-S. Pan, “A multi-objective optimal mobile robot path planning based on whale optimization algorithm,” in 2016 IEEE 13th International Conference on Signal Processing (ICSP), 2016, pp. 337–342.
23.
Zurück zum Zitat T. S. T. Bhavani and S. Begum, “Agriculture productivity enhancement system using IOT,” International Journal of Theoretical and Applied Mechanics, vol. 12, no. 3, pp. 543–554, 2017. T. S. T. Bhavani and S. Begum, “Agriculture productivity enhancement system using IOT,” International Journal of Theoretical and Applied Mechanics, vol. 12, no. 3, pp. 543–554, 2017.
24.
Zurück zum Zitat A. Salam and S. Shah, “Internet of things in smart agriculture: Enabling technologies,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019, pp. 692–695. A. Salam and S. Shah, “Internet of things in smart agriculture: Enabling technologies,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019, pp. 692–695.
25.
Zurück zum Zitat A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Computers and electronics in agriculture, vol. 157, pp. 218–231, 2019.CrossRef A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Computers and electronics in agriculture, vol. 157, pp. 218–231, 2019.CrossRef
26.
Zurück zum Zitat N. Gondchawar and R. S. Kawitkar, “IoT based smart agriculture,” International Journal of advanced research in Computer and Communication Engineering, vol. 5, no. 6, pp. 838–842, 2016. N. Gondchawar and R. S. Kawitkar, “IoT based smart agriculture,” International Journal of advanced research in Computer and Communication Engineering, vol. 5, no. 6, pp. 838–842, 2016.
28.
Zurück zum Zitat S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” in 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, Mar. 2017, pp. 81–84, doi: https://doi.org/10.1109/ICRAECT.2017.52. S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” in 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, Mar. 2017, pp. 81–84, doi: https://​doi.​org/​10.​1109/​ICRAECT.​2017.​52.
31.
Zurück zum Zitat P. Wang, “An Improved Multilayer Perceptron Approach for Detecting Sugarcane Yield Production in IoT based Smart Agriculture,” Microprocessors and Microsystems, p. 7, 2021. P. Wang, “An Improved Multilayer Perceptron Approach for Detecting Sugarcane Yield Production in IoT based Smart Agriculture,” Microprocessors and Microsystems, p. 7, 2021.
32.
Zurück zum Zitat M. McRoberts, Beginning Arduino. Apress, 2011. M. McRoberts, Beginning Arduino. Apress, 2011.
33.
Zurück zum Zitat Q. I. Sarhan, “Arduino Based Smart Home Warning System,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), 2020, pp. 201–206. Q. I. Sarhan, “Arduino Based Smart Home Warning System,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), 2020, pp. 201–206.
34.
Zurück zum Zitat A. A. Galadima, “Arduino as a learning tool,” in 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1–4. A. A. Galadima, “Arduino as a learning tool,” in 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1–4.
35.
Zurück zum Zitat M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, “Environmental parameters monitoring in precision agriculture using wireless sensor networks,” Journal of cleaner production, vol. 88, pp. 297–307, 2015.CrossRef M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, “Environmental parameters monitoring in precision agriculture using wireless sensor networks,” Journal of cleaner production, vol. 88, pp. 297–307, 2015.CrossRef
36.
Zurück zum Zitat Z. Liu, C. Sun, and L. Xiang, “The measure of environmental sensitivity in detection performance degradation,” in AIP Conference Proceedings, 2012, vol. 1495, no. 1, pp. 659–666. Z. Liu, C. Sun, and L. Xiang, “The measure of environmental sensitivity in detection performance degradation,” in AIP Conference Proceedings, 2012, vol. 1495, no. 1, pp. 659–666.
37.
Zurück zum Zitat G. Pavlogeorgatos, “Environmental parameters in museums,” Building and Environment, vol. 38, no. 12, pp. 1457–1462, 2003.CrossRef G. Pavlogeorgatos, “Environmental parameters in museums,” Building and Environment, vol. 38, no. 12, pp. 1457–1462, 2003.CrossRef
38.
Zurück zum Zitat M. Bogdan, “How to use the DHT22 sensor for measuring temperature and humidity with the Arduino board,” ACTA Universitatis Cibiniensis, vol. 68, no. 1, pp. 22–25, 2016.CrossRef M. Bogdan, “How to use the DHT22 sensor for measuring temperature and humidity with the Arduino board,” ACTA Universitatis Cibiniensis, vol. 68, no. 1, pp. 22–25, 2016.CrossRef
39.
Zurück zum Zitat H. A. N. Dan-ao and W. Fei, “Research application of the digital temperature and humidity sensor DHT11 [J],” Electronic Design Engineering, vol. 13, p. 027, 2013. H. A. N. Dan-ao and W. Fei, “Research application of the digital temperature and humidity sensor DHT11 [J],” Electronic Design Engineering, vol. 13, p. 027, 2013.
40.
Zurück zum Zitat R. Soukup, A. Hamacek, L. Mracek, and J. Reboun, “Textile based temperature and humidity sensor elements for healthcare applications,” in Proceedings of the 2014 37th international spring seminar on electronics technology, 2014, pp. 407–411. R. Soukup, A. Hamacek, L. Mracek, and J. Reboun, “Textile based temperature and humidity sensor elements for healthcare applications,” in Proceedings of the 2014 37th international spring seminar on electronics technology, 2014, pp. 407–411.
41.
Zurück zum Zitat C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electronics Letters, vol. 46, no. 9, pp. 643–644, 2010.CrossRef C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electronics Letters, vol. 46, no. 9, pp. 643–644, 2010.CrossRef
42.
Zurück zum Zitat C.-Y. Lee and G.-B. Lee, “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of micromechanics and microengineering, vol. 13, no. 5, p. 620, 2003.CrossRef C.-Y. Lee and G.-B. Lee, “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of micromechanics and microengineering, vol. 13, no. 5, p. 620, 2003.CrossRef
43.
Zurück zum Zitat T. Dinh Le and D. H. Tan, “Design and deploy a wireless sensor network for precision agriculture,” in 2015 2nd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), Sep. 2015, pp. 294–299, doi: https://doi.org/10.1109/NICS.2015.7302210. T. Dinh Le and D. H. Tan, “Design and deploy a wireless sensor network for precision agriculture,” in 2015 2nd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), Sep. 2015, pp. 294–299, doi: https://​doi.​org/​10.​1109/​NICS.​2015.​7302210.
44.
Zurück zum Zitat M. A. S. B. Azmi and S. Sulaiman, “Design of domestic water meter using Arduino,” in AIP Conference Proceedings, 2020, vol. 2306, no. 1, p. 020035. M. A. S. B. Azmi and S. Sulaiman, “Design of domestic water meter using Arduino,” in AIP Conference Proceedings, 2020, vol. 2306, no. 1, p. 020035.
45.
Zurück zum Zitat I. Prasojo, A. Maseleno, and N. Shahu, “Design of automatic watering system based on Arduino,” Journal of Robotics and Control (JRC), vol. 1, no. 2, pp. 59–63, 2020. I. Prasojo, A. Maseleno, and N. Shahu, “Design of automatic watering system based on Arduino,” Journal of Robotics and Control (JRC), vol. 1, no. 2, pp. 59–63, 2020.
46.
Zurück zum Zitat M. Asha T and M. Srija V, “Design and Implementation of Wireless Based Water Level Monitoring System using Arduino and Bluetooth,” Int. Resear. Jour. Engg. Tech, vol. 7, 2020. M. Asha T and M. Srija V, “Design and Implementation of Wireless Based Water Level Monitoring System using Arduino and Bluetooth,” Int. Resear. Jour. Engg. Tech, vol. 7, 2020.
47.
Zurück zum Zitat A. Kurniawan, “Arduino Nano 33 IoT Networking,” in Beginning Arduino Nano 33 IoT, Springer, 2021, pp. 103–129. A. Kurniawan, “Arduino Nano 33 IoT Networking,” in Beginning Arduino Nano 33 IoT, Springer, 2021, pp. 103–129.
Metadaten
Titel
Smart System for Monitoring and Controlling of Agricultural Production by the IoT
verfasst von
Jamal Mabrouki
Karima Azoulay
Saloua Elfanssi
Loubna Bouhachlaf
Fatimazahra Mousli
Mourade Azrour
Souad El Hajjaji
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-90083-0_8

Premium Partner