Skip to main content

2016 | OriginalPaper | Buchkapitel

7. Nonlinear Forced Vibration of Nanobeams

verfasst von : Mohammad M. Aghdam, Hamed Niknam

Erschienen in: Nonlinear Approaches in Engineering Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the effects of nonlocal stress field on the beam excited with distributed and concentrated harmonic loads are investigated. The Euler–Bernoulli assumptions together with Von Karman geometric type nonlinearity are used to formulate the strain field. The stress field is written based on Eringen’s nonlocal theory. Applying the Hamilton principle, the governing partial differential equation is obtained. Implementing Galerkin technique together with Ritz averaging method, closed form solutions are presented for both time and frequency responses of the beam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adhikari, S., Murmu, T., & McCarthy, M. A. (2013). Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elements in Analysis and Design, 63, 42–50.MathSciNetCrossRefMATH Adhikari, S., Murmu, T., & McCarthy, M. A. (2013). Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elements in Analysis and Design, 63, 42–50.MathSciNetCrossRefMATH
Zurück zum Zitat Aifantis, E. C. (1999). Strain gradient interpretation of size effects. International Journal of Fracture, 95, 299–314.CrossRef Aifantis, E. C. (1999). Strain gradient interpretation of size effects. International Journal of Fracture, 95, 299–314.CrossRef
Zurück zum Zitat Ansari, R., Rouhi, H., & Sahmani, S. (2011). Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. International Journal of Mechanical Sciences, 53, 786–792.CrossRef Ansari, R., Rouhi, H., & Sahmani, S. (2011). Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. International Journal of Mechanical Sciences, 53, 786–792.CrossRef
Zurück zum Zitat Aydogdu, M. (2009). A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E: Low-dimensional Systems and Nanostructures, 41, 1651–1655.CrossRef Aydogdu, M. (2009). A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E: Low-dimensional Systems and Nanostructures, 41, 1651–1655.CrossRef
Zurück zum Zitat Azrar, L., Benamar, R., & White, R. G. (1999). Semi-analytical approach to the non-linear dynamic response problem of s–s and c–c beams at large vibration amplitudes part I: General theory and application to the single mode approach to free and forced vibration analysis. Journal of Sound and Vibration, 224, 183–207.CrossRef Azrar, L., Benamar, R., & White, R. G. (1999). Semi-analytical approach to the non-linear dynamic response problem of s–s and c–c beams at large vibration amplitudes part I: General theory and application to the single mode approach to free and forced vibration analysis. Journal of Sound and Vibration, 224, 183–207.CrossRef
Zurück zum Zitat Azrar, L., Benamar, R., & White, R. G. (2002). A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, part II: Multimode approach to the steady state forced periodic response. Journal of Sound and Vibration, 255, 1–41.CrossRef Azrar, L., Benamar, R., & White, R. G. (2002). A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, part II: Multimode approach to the steady state forced periodic response. Journal of Sound and Vibration, 255, 1–41.CrossRef
Zurück zum Zitat Benamar, R., Bennouna, M. M. K., & White, R. G. (1991). The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures part I: Simply supported and clamped-clamped beams. Journal of Sound and Vibration, 149, 179–195.CrossRef Benamar, R., Bennouna, M. M. K., & White, R. G. (1991). The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures part I: Simply supported and clamped-clamped beams. Journal of Sound and Vibration, 149, 179–195.CrossRef
Zurück zum Zitat Bennett, J. A., & Eisley, J. G. (1970). A multiple degree-of-freedom approach to nonlinear beam vibrations. AIAA Journal, 8, 734–739.CrossRefMATH Bennett, J. A., & Eisley, J. G. (1970). A multiple degree-of-freedom approach to nonlinear beam vibrations. AIAA Journal, 8, 734–739.CrossRefMATH
Zurück zum Zitat Busby, H. R., Jr., & Weingarten, V. I. (1972). Non-linear response of a beam to periodic loading. International Journal of Non-Linear Mechanics, 7, 289–303.CrossRefMATH Busby, H. R., Jr., & Weingarten, V. I. (1972). Non-linear response of a beam to periodic loading. International Journal of Non-Linear Mechanics, 7, 289–303.CrossRefMATH
Zurück zum Zitat Duan, W. H., Wang, C. M., & Zhang, Y. Y. (2007). Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. Journal of Applied Physics, 101, 024305–024307.CrossRef Duan, W. H., Wang, C. M., & Zhang, Y. Y. (2007). Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. Journal of Applied Physics, 101, 024305–024307.CrossRef
Zurück zum Zitat Eltaher, M. A., Alshorbagy, A. E., & Mahmoud, F. F. (2013). Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 37, 4787–4797.MathSciNetCrossRef Eltaher, M. A., Alshorbagy, A. E., & Mahmoud, F. F. (2013). Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 37, 4787–4797.MathSciNetCrossRef
Zurück zum Zitat Eltaher, M. A., Emam, S. A., & Mahmoud, F. F. (2012). Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 218, 7406–7420.MathSciNetCrossRefMATH Eltaher, M. A., Emam, S. A., & Mahmoud, F. F. (2012). Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 218, 7406–7420.MathSciNetCrossRefMATH
Zurück zum Zitat Eringen, A. C. (2010). Nonlocal continuum field theories. Berlin: Springer.MATH Eringen, A. C. (2010). Nonlocal continuum field theories. Berlin: Springer.MATH
Zurück zum Zitat Genta, G. (2009). Forced response of conservative nonlinear systems. In G. Genta (Ed.), Vibration dynamics and control (pp. 481–499). New York: Springer. Genta, G. (2009). Forced response of conservative nonlinear systems. In G. Genta (Ed.), Vibration dynamics and control (pp. 481–499). New York: Springer.
Zurück zum Zitat Gurtin, M. E., Weissmüller, J., & Larché, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.CrossRef Gurtin, M. E., Weissmüller, J., & Larché, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.CrossRef
Zurück zum Zitat Hosseini, S. M., Mareishi, S., Kalhori, H., & Rafiee, M. (2012). Large amplitude free and forced oscillations of functionally graded beams. Mechanics of Advanced Materials and Structures, 21, 255–262.CrossRef Hosseini, S. M., Mareishi, S., Kalhori, H., & Rafiee, M. (2012). Large amplitude free and forced oscillations of functionally graded beams. Mechanics of Advanced Materials and Structures, 21, 255–262.CrossRef
Zurück zum Zitat Kanani, A. S., Niknam, H., Ohadi, A. R., & Aghdam, M. M. (2014). Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115, 60–68.CrossRef Kanani, A. S., Niknam, H., Ohadi, A. R., & Aghdam, M. M. (2014). Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115, 60–68.CrossRef
Zurück zum Zitat Kanwal, R. P. (1998). Generalized functions theory and technique: Theory and technique. Berlin: Springer.MATH Kanwal, R. P. (1998). Generalized functions theory and technique: Theory and technique. Berlin: Springer.MATH
Zurück zum Zitat Karaoglu, P., & Aydogdu, M. (2010). On the forced vibration of carbon nanotubes via a non-local Euler—Bernoulli beam model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224, 497–503.CrossRef Karaoglu, P., & Aydogdu, M. (2010). On the forced vibration of carbon nanotubes via a non-local Euler—Bernoulli beam model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224, 497–503.CrossRef
Zurück zum Zitat Kiani, K. (2010). Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 42, 2391–2401.CrossRef Kiani, K. (2010). Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 42, 2391–2401.CrossRef
Zurück zum Zitat Lei, Y., Murmu, T., Adhikari, S., & Friswell, M. I. (2013). Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. European Journal of Mechanics - A/Solids, 42, 125–136.MathSciNetCrossRef Lei, Y., Murmu, T., Adhikari, S., & Friswell, M. I. (2013). Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. European Journal of Mechanics - A/Solids, 42, 125–136.MathSciNetCrossRef
Zurück zum Zitat Lewandowski, R. (1997a). Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background. International Journal of Solids and Structures, 34, 1925–1947.CrossRefMATH Lewandowski, R. (1997a). Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background. International Journal of Solids and Structures, 34, 1925–1947.CrossRefMATH
Zurück zum Zitat Lewandowski, R. (1997b). Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples. International Journal of Solids and Structures, 34, 1949–1964.CrossRefMATH Lewandowski, R. (1997b). Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples. International Journal of Solids and Structures, 34, 1949–1964.CrossRefMATH
Zurück zum Zitat Mei, C., & Decha-Umphai, K. (1985). A finite element method for non-linear forced vibrations of beams. Journal of Sound and Vibration, 102, 369–380.CrossRefMATH Mei, C., & Decha-Umphai, K. (1985). A finite element method for non-linear forced vibrations of beams. Journal of Sound and Vibration, 102, 369–380.CrossRefMATH
Zurück zum Zitat Niknam, H., & Aghdam, M. M. (2015). A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Composite Structures, 119, 452–462.CrossRef Niknam, H., & Aghdam, M. M. (2015). A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Composite Structures, 119, 452–462.CrossRef
Zurück zum Zitat Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45, 288–307.CrossRefMATH Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45, 288–307.CrossRefMATH
Zurück zum Zitat Reddy, J. N., & Pang, S. D. (2008). Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103, 023611-1:16. Reddy, J. N., & Pang, S. D. (2008). Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103, 023611-1:16.
Zurück zum Zitat Ribeiro, P., & Petyt, M. (1999). Non-linear vibration of beams with internal resonance by the hierarchical finite-element method. Journal of Sound and Vibration, 224, 591–624.CrossRef Ribeiro, P., & Petyt, M. (1999). Non-linear vibration of beams with internal resonance by the hierarchical finite-element method. Journal of Sound and Vibration, 224, 591–624.CrossRef
Zurück zum Zitat Shi, Y., Lee, R. Y. Y., & Mei, C. (1997). Finite element method for nonlinear free vibrations of composite plates. AIAA Journal, 35, 159–166. Shi, Y., Lee, R. Y. Y., & Mei, C. (1997). Finite element method for nonlinear free vibrations of composite plates. AIAA Journal, 35, 159–166.
Zurück zum Zitat Shooshtari, A., & Rafiee, M. (2011). Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mechanica, 221, 23–38.CrossRefMATH Shooshtari, A., & Rafiee, M. (2011). Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mechanica, 221, 23–38.CrossRefMATH
Zurück zum Zitat Şimşek, M. (2010a). Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Composite Structures, 92, 2532–2546.CrossRef Şimşek, M. (2010a). Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Composite Structures, 92, 2532–2546.CrossRef
Zurück zum Zitat Şimşek, M. (2010b). Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Composite Structures, 92, 904–917.CrossRef Şimşek, M. (2010b). Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Composite Structures, 92, 904–917.CrossRef
Zurück zum Zitat Şimşek, M. (2010c). Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43, 182–191.CrossRef Şimşek, M. (2010c). Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43, 182–191.CrossRef
Zurück zum Zitat Şimşek, M. (2011). Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Computational Materials Science, 50, 2112–2123.CrossRef Şimşek, M. (2011). Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Computational Materials Science, 50, 2112–2123.CrossRef
Zurück zum Zitat Şimşek, M. (2014). Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Composites Part B: Engineering, 56, 621–628.CrossRef Şimşek, M. (2014). Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Composites Part B: Engineering, 56, 621–628.CrossRef
Zurück zum Zitat Şimşek, M., & Kocatürk, T. (2009). Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90, 465–473.CrossRef Şimşek, M., & Kocatürk, T. (2009). Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90, 465–473.CrossRef
Zurück zum Zitat Şimşek, M., & Yurtcu, H. H. (2013). Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Composite Structures, 97, 378–386.CrossRef Şimşek, M., & Yurtcu, H. H. (2013). Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Composite Structures, 97, 378–386.CrossRef
Zurück zum Zitat Thai, H.-T. (2012). A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 52, 56–64.MathSciNetCrossRef Thai, H.-T. (2012). A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 52, 56–64.MathSciNetCrossRef
Zurück zum Zitat Thai, H.-T., & Vo, T. P. (2012). A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 54, 58–66.MathSciNetCrossRef Thai, H.-T., & Vo, T. P. (2012). A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 54, 58–66.MathSciNetCrossRef
Zurück zum Zitat Uymaz, B. (2013). Forced vibration analysis of functionally graded beams using nonlocal elasticity. Composite Structures, 105, 227–239.CrossRef Uymaz, B. (2013). Forced vibration analysis of functionally graded beams using nonlocal elasticity. Composite Structures, 105, 227–239.CrossRef
Zurück zum Zitat Valcárcel, M., Simonet, B. M., & Cárdenas, S. (2008). Analytical nanoscience and nanotechnology today and tomorrow. Analytical and Bioanalytical Chemistry, 391, 1881–1887.CrossRef Valcárcel, M., Simonet, B. M., & Cárdenas, S. (2008). Analytical nanoscience and nanotechnology today and tomorrow. Analytical and Bioanalytical Chemistry, 391, 1881–1887.CrossRef
Zurück zum Zitat Wang, Y.-G., Lin, W.-H., & Liu, N. (2012). A homotopy perturbation-based method for large deflection of a cantilever beam under a terminal follower force. International Journal for Computational Methods in Engineering Science and Mechanics, 13, 197–201.MathSciNetCrossRef Wang, Y.-G., Lin, W.-H., & Liu, N. (2012). A homotopy perturbation-based method for large deflection of a cantilever beam under a terminal follower force. International Journal for Computational Methods in Engineering Science and Mechanics, 13, 197–201.MathSciNetCrossRef
Zurück zum Zitat Yang, F., Chong, A. C. M., Lam, D. C. C., & Tong, P. (2002). Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743.CrossRefMATH Yang, F., Chong, A. C. M., Lam, D. C. C., & Tong, P. (2002). Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743.CrossRefMATH
Metadaten
Titel
Nonlinear Forced Vibration of Nanobeams
verfasst von
Mohammad M. Aghdam
Hamed Niknam
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-27055-5_7

    Premium Partner