Skip to main content

2016 | OriginalPaper | Buchkapitel

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields

verfasst von : Patrick Ferdinand Christ, Mohamed Ezzeldin A. Elshaer, Florian Ettlinger, Sunil Tatavarty, Marc Bickel, Patrick Bilic, Markus Rempfler, Marco Armbruster, Felix Hofmann, Melvin D’Anastasi, Wieland H. Sommer, Seyed-Ahmad Ahmadi, Bjoern H. Menze

Erschienen in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Automatic segmentation of the liver and its lesion is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment liver and lesions in CT abdomen images using cascaded fully convolutional neural networks (CFCNs) and dense 3D conditional random fields (CRFs). We train and cascade two FCNs for a combined segmentation of the liver and its lesions. In the first step, we train a FCN to segment the liver as ROI input for a second FCN. The second FCN solely segments lesions from the predicted liver ROIs of step 1. We refine the segmentations of the CFCN using a dense 3D CRF that accounts for both spatial coherence and appearance. CFCN models were trained in a 2-fold cross-validation on the abdominal CT dataset 3DIRCAD comprising 15 hepatic tumor volumes. Our results show that CFCN-based semantic liver and lesion segmentation achieves Dice scores over \(94\,\%\) for liver with computation times below 100 s per volume. We experimentally demonstrate the robustness of the proposed method as a decision support system with a high accuracy and speed for usage in daily clinical routine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Two-sided paired t-test with p-value \(< 4 \cdot 10^{-19}\).
 
3
Trained models are available at https://​github.​com/​IBBM/​Cascaded-FCN.
 
Literatur
1.
Zurück zum Zitat Ben-Cohen, A., et al.: Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J. Med. Imaging 3 (2015) Ben-Cohen, A., et al.: Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J. Med. Imaging 3 (2015)
2.
Zurück zum Zitat Chartrand, G., et al.: Semi-automated liver CT segmentation using Laplacian meshes. In: ISBI, pp. 641–644. IEEE (2014) Chartrand, G., et al.: Semi-automated liver CT segmentation using Laplacian meshes. In: ISBI, pp. 641–644. IEEE (2014)
3.
Zurück zum Zitat Chen, L.C., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015) Chen, L.C., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
4.
Zurück zum Zitat Deng, X., Du, G.: Editorial: 3D segmentation in the clinic: a grand challenge ii-liver tumor segmentation. In: MICCAI Workshop (2008) Deng, X., Du, G.: Editorial: 3D segmentation in the clinic: a grand challenge ii-liver tumor segmentation. In: MICCAI Workshop (2008)
5.
Zurück zum Zitat Foruzan, A.H., Chen, Y.W.: Improved segmentation of low-contrast lesions using sigmoid edge model. Int. J. Comput. Assist. Radiol. Surg., 1–17 (2015) Foruzan, A.H., Chen, Y.W.: Improved segmentation of low-contrast lesions using sigmoid edge model. Int. J. Comput. Assist. Radiol. Surg., 1–17 (2015)
6.
Zurück zum Zitat Freiman, M., Cooper, O., Lischinski, D., Joskowicz, L.: Liver tumors segmentation from cta images using voxels classification and affinity constraint propagation. Int. J. Comput. Assist. Radiol. Surg. 6(2), 247–255 (2011)CrossRef Freiman, M., Cooper, O., Lischinski, D., Joskowicz, L.: Liver tumors segmentation from cta images using voxels classification and affinity constraint propagation. Int. J. Comput. Assist. Radiol. Surg. 6(2), 247–255 (2011)CrossRef
7.
Zurück zum Zitat Häme, Y., Pollari, M.: Semi-automatic liver tumor segmentation with hidden markov measure field model and non-parametric distribution estimation. Med. Image Anal. 16(1), 140–149 (2012)CrossRef Häme, Y., Pollari, M.: Semi-automatic liver tumor segmentation with hidden markov measure field model and non-parametric distribution estimation. Med. Image Anal. 16(1), 140–149 (2012)CrossRef
8.
Zurück zum Zitat Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. (2016) Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. (2016)
9.
Zurück zum Zitat Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Trans. Med. Imag. 28(8), 1251–1265 (2009)CrossRef Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Trans. Med. Imag. 28(8), 1251–1265 (2009)CrossRef
10.
Zurück zum Zitat Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceeding ACM International Conference Multimedia, pp. 675–678. ACM (2014) Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceeding ACM International Conference Multimedia, pp. 675–678. ACM (2014)
11.
Zurück zum Zitat Kadoury, S., Vorontsov, E., Tang, A.: Metastatic liver tumour segmentation from discriminant grassmannian manifolds. Phys. Med. Biol. 60(16), 6459 (2015)CrossRef Kadoury, S., Vorontsov, E., Tang, A.: Metastatic liver tumour segmentation from discriminant grassmannian manifolds. Phys. Med. Biol. 60(16), 6459 (2015)CrossRef
12.
Zurück zum Zitat Kamnitsas, K., et. al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation (2016). arXiv preprint arXiv:1603.05959 Kamnitsas, K., et. al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation (2016). arXiv preprint arXiv:​1603.​05959
13.
Zurück zum Zitat Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NIPS, pp. 109–117 (2011) Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: NIPS, pp. 109–117 (2011)
14.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
15.
Zurück zum Zitat Li, C., Wang, X., Eberl, S., Fulham, M., Yin, Y., Chen, J., Feng, D.D.: A likelihood and local constraint level set model for liver tumor segmentation from ct volumes. IEEE Trans. Biomed. Eng. 60(10), 2967–2977 (2013)CrossRef Li, C., Wang, X., Eberl, S., Fulham, M., Yin, Y., Chen, J., Feng, D.D.: A likelihood and local constraint level set model for liver tumor segmentation from ct volumes. IEEE Trans. Biomed. Eng. 60(10), 2967–2977 (2013)CrossRef
16.
Zurück zum Zitat Li, G., Chen, X., Shi, F., Zhu, W., Tian, J., Xiang, D.: Automatic liver segmentation based on shape constraints and deformable graph cut in ct images. IEEE Trans. Image Process. 24(12), 5315–5329 (2015)MathSciNetCrossRef Li, G., Chen, X., Shi, F., Zhu, W., Tian, J., Xiang, D.: Automatic liver segmentation based on shape constraints and deformable graph cut in ct images. IEEE Trans. Image Process. 24(12), 5315–5329 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Linguraru, M.G., Richbourg, W.J., Liu, J., Watt, J.M., Pamulapati, V., Wang, S., Summers, R.M.: Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans. Med. Imag. 31(10), 1965–1976 (2012)CrossRef Linguraru, M.G., Richbourg, W.J., Liu, J., Watt, J.M., Pamulapati, V., Wang, S., Summers, R.M.: Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans. Med. Imag. 31(10), 1965–1976 (2012)CrossRef
18.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
19.
Zurück zum Zitat Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_31 CrossRef Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40763-5_​31 CrossRef
20.
Zurück zum Zitat Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_28 CrossRef Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24574-4_​28 CrossRef
21.
Zurück zum Zitat Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_68 CrossRef Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24553-9_​68 CrossRef
22.
Zurück zum Zitat Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient-specific anatomical and medical image database (2012) Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient-specific anatomical and medical image database (2012)
23.
Zurück zum Zitat Wang, J., MacKenzie, J.D., Ramachandran, R., Chen, D.Z.: Detection of Glands and Villi by collaboration of domain knowledge and deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 20–27. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24571-3_3 CrossRef Wang, J., MacKenzie, J.D., Ramachandran, R., Chen, D.Z.: Detection of Glands and Villi by collaboration of domain knowledge and deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 20–27. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24571-3_​3 CrossRef
24.
Zurück zum Zitat Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural networks. In: ICCV (2015) Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural networks. In: ICCV (2015)
Metadaten
Titel
Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
verfasst von
Patrick Ferdinand Christ
Mohamed Ezzeldin A. Elshaer
Florian Ettlinger
Sunil Tatavarty
Marc Bickel
Patrick Bilic
Markus Rempfler
Marco Armbruster
Felix Hofmann
Melvin D’Anastasi
Wieland H. Sommer
Seyed-Ahmad Ahmadi
Bjoern H. Menze
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46723-8_48

Premium Partner