Skip to main content

2016 | OriginalPaper | Buchkapitel

Collaborative Delivery with Energy-Constrained Mobile Robots

verfasst von : Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann, Daniel Graf, Arnaud Labourel, Matúš Mihalák

Erschienen in: Structural Information and Communication Complexity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the problem of collectively delivering some message from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has a limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the message, each agent handing over the message to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) \(\mathrm {NP}\)-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the nonreturning version we want agents to have the same “range”, hence we set their budget to \(\zeta \).
 
2
In the nonreturning version we assign a budget of \((1+\zeta )\) to clause agents.
 
3
We relocate a non-returning agent by adding an edge of length \((B-B_i)\).
 
4
Non-returning clause agents can do this if they are 3-resource-augmented; and we can prevent it for \((3-\varepsilon )\)-resource-augmentation by setting \(\zeta \) such that \((3-\varepsilon )\cdot (1+\zeta ) \ll 3\) (in fact the value of \(\zeta \) will be the same as for returning BudgetedDelivery, but we will use different bounds in the proof).
 
5
In the nonreturning version, variable agents have a budget of \(\zeta \) and clause agents a budget of \(1+\zeta \).
 
6
For non-returning agents we use (for \(\varepsilon < 2\)) the inequalities: \(\zeta = \tfrac{\varepsilon }{6-\varepsilon }< \tfrac{\varepsilon }{4} < \tfrac{\varepsilon }{2}\) and \((6-\varepsilon ) > 2(3-\varepsilon )\). Hence a non-returning \(\gamma \)-resource-augmented clause agent has a budget of \(\gamma (1+\zeta ) = (3-\varepsilon )(1+\zeta ) = 3-\varepsilon + \tfrac{(3-\varepsilon )\varepsilon }{6-\varepsilon }< 3-\tfrac{\varepsilon }{2} < 3-\zeta = 3\cdot (1-\tfrac{\zeta }{3})\), and thus cannot transport the message via its clause node.
 
Literatur
2.
Zurück zum Zitat Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)MathSciNetCrossRefMATH Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007) Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)
4.
Zurück zum Zitat Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetCrossRefMATH Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetCrossRefMATH
5.
6.
Zurück zum Zitat Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: 35th Symposium on Foundations of Computer Science, FOCS 1994, pp. 75–85 (1994) Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: 35th Symposium on Foundations of Computer Science, FOCS 1994, pp. 75–85 (1994)
7.
Zurück zum Zitat Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995) Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)
8.
Zurück zum Zitat Biló, D., Disser, Y., Gualá, L., Mihal’ák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014)CrossRef Biló, D., Disser, Y., Gualá, L., Mihal’ák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014)CrossRef
9.
Zurück zum Zitat Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014)CrossRef Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014)CrossRef
10.
Zurück zum Zitat Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014) Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014)
11.
Zurück zum Zitat Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: 23rd International Colloquium on Structural Information and Communication Complexity SIROCCO 2016 (2016) Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: 23rd International Colloquium on Structural Information and Communication Complexity SIROCCO 2016 (2016)
12.
Zurück zum Zitat Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: 22th International Colloquium on Structural Information and Communication Complexity SIROCCO 2015, pp. 357–369 (2015) Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: 22th International Colloquium on Structural Information and Communication Complexity SIROCCO 2015, pp. 357–369 (2015)
13.
Zurück zum Zitat Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)MathSciNetCrossRefMATH Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Dereniowski, D., Disser, Y., Kosowski, A., Pajkak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetCrossRefMATH Dereniowski, D., Disser, Y., Kosowski, A., Pajkak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th ACM Symposium on Discrete Algorithms, SODA 2001, pp. 807–814 (2001) Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: 12th ACM Symposium on Discrete Algorithms, SODA 2001, pp. 807–814 (2001)
16.
Zurück zum Zitat Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRef Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRef
17.
Zurück zum Zitat Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)CrossRef Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)CrossRef
19.
Zurück zum Zitat Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)MATH Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)MATH
20.
22.
Zurück zum Zitat Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, pp. 27–36 (2012) Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, pp. 27–36 (2012)
Metadaten
Titel
Collaborative Delivery with Energy-Constrained Mobile Robots
verfasst von
Andreas Bärtschi
Jérémie Chalopin
Shantanu Das
Yann Disser
Barbara Geissmann
Daniel Graf
Arnaud Labourel
Matúš Mihalák
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-48314-6_17

Premium Partner