Skip to main content

2017 | OriginalPaper | Buchkapitel

12. Laser Metal Deposition Process for Product Remanufacturing

verfasst von : Rasheedat M. Mahamood, Esther T. Akinlabi, Moses G. Owolabi

Erschienen in: Advanced Manufacturing Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Remanufacturing is a process of bringing a damaged part back to its perfect working condition. The cost of remanufacturing equipment or parts is cheaper than the cost of buying a new one. The conventional manufacturing method involves processes which are energy inefficient that causes lots of emissions, thereby contributing immensely to the global warming problems. An alternative manufacturing process is inevitably required which is capable of reducing the environmental impact during various phases of product life cycle that helps in cost saving by extending the service life of equipment or parts which will in turn greatly improve the country’s economy. The advanced remanufacturing techniques such as laser metal deposition (LMD) process that belongs to a class of additive manufacturing processes can overcome the limitations of conventional manufacturing processes and capable to repair engineered parts having complex features that are difficult to access at the repair site. LMD can be used to fabricate part directly from its three-dimensional (3D) computer-aided design (CAD) model just by adding materials layer by layer. This technology offers design flexibility to engineers by allowing modification of an existing design without having to start from the scratch which is a basic requirement in product remanufacturing. This chapter discusses the capability of LMD process for restoring and remanufacturing high-valued components back to their perfect working conditions. Some of the research works that demonstrate the capability and effectiveness of using LMD for remanufacturing of high-valued products that is sustainable, cheap, and above all energy efficient are briefed. A case study to demonstrate the metallurgical integrity and properties of titanium alloy powder deposited on Ti6Al4V substrate using the LMD process and its sustainable aspects is also discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lant T, Robinson DL, Spafford B, Storesund J (2001) Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking. Int J Press Vessel Piping 78(11–12):812–818 Lant T, Robinson DL, Spafford B, Storesund J (2001) Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking. Int J Press Vessel Piping 78(11–12):812–818
2.
Zurück zum Zitat Pinkerton A, Li L (2004) Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties. Thin Solid Films 453–454:471–476CrossRef Pinkerton A, Li L (2004) Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties. Thin Solid Films 453–454:471–476CrossRef
3.
Zurück zum Zitat Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surf Sci 252(22):7934–7940CrossRef Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surf Sci 252(22):7934–7940CrossRef
4.
Zurück zum Zitat Capello E, Colombo D, Previtali B (2005) Repairing of sintered tools using laser cladding by wire. J Mater Process Technol 164–165:990–1000CrossRef Capello E, Colombo D, Previtali B (2005) Repairing of sintered tools using laser cladding by wire. J Mater Process Technol 164–165:990–1000CrossRef
6.
Zurück zum Zitat Mahamood RM (2016) Laser metal deposition process. In: Akinlabi, ET, Mahamood, MR, Akinlabi SA (eds) Advanced manufacturing using laser material processing. IGI Global, pp 46–59 Mahamood RM (2016) Laser metal deposition process. In: Akinlabi, ET, Mahamood, MR, Akinlabi SA (eds) Advanced manufacturing using laser material processing. IGI Global, pp 46–59
8.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666CrossRef Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666CrossRef
9.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2016), Microstructure and mechanical behaviour of laser metal deposition of titanium alloy. Lasers Eng. In press Mahamood RM, Akinlabi ET (2016), Microstructure and mechanical behaviour of laser metal deposition of titanium alloy. Lasers Eng. In press
10.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Laser metal deposition of ti6al4v: a study on the effect of laser power on microstructure and microhardness. In: International multi-conference of engineering and computer science (IMECS 2013) March 2013, pp 994–999 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Laser metal deposition of ti6al4v: a study on the effect of laser power on microstructure and microhardness. In: International multi-conference of engineering and computer science (IMECS 2013) March 2013, pp 994–999
11.
Zurück zum Zitat Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti–6Al–4 V using laser and wire, part I: microstructural properties of single beads. Surf Coat. Technol. 206:1120–1129CrossRef Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti–6Al–4 V using laser and wire, part I: microstructural properties of single beads. Surf Coat. Technol. 206:1120–1129CrossRef
12.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013). The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy. In: 2013 International multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 876–881 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013). The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy. In: 2013 International multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 876–881
13.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012). Effect of laser power on material efficiency, layer height and width of laser metal deposited Ti6Al4V. In: World congress of engineering and computer science. San Francisco 2012, 24–26 Oct 2012, pp 1433–1438 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012). Effect of laser power on material efficiency, layer height and width of laser metal deposited Ti6Al4V. In: World congress of engineering and computer science. San Francisco 2012, 24–26 Oct 2012, pp 1433–1438
15.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2016) Process parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf Mater Process 3(1):9–21. doi:10.1007/s40516-015-0020-5 CrossRef Mahamood RM, Akinlabi ET (2016) Process parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf Mater Process 3(1):9–21. doi:10.​1007/​s40516-015-0020-5 CrossRef
16.
Zurück zum Zitat Akinlabi ET, Mahamood RM, Shukla M, Pityana S (2012) Effect of scanning speed on material efficiency of laser metal deposited Ti6Al4V. World Acad Sci Technol Paris 2012(6):58–62 Akinlabi ET, Mahamood RM, Shukla M, Pityana S (2012) Effect of scanning speed on material efficiency of laser metal deposited Ti6Al4V. World Acad Sci Technol Paris 2012(6):58–62
17.
Zurück zum Zitat Wang ZM, Ezugwu EO (1997) Titanium alloys and their Machinability a review. J Mater Process Technol 68:262–270CrossRef Wang ZM, Ezugwu EO (1997) Titanium alloys and their Machinability a review. J Mater Process Technol 68:262–270CrossRef
18.
Zurück zum Zitat Kannan P, Amirthagadeswaran KS, Christopher T, Rao BN (2013) Failures of high- temperature critical components in combined cycle power plants. J Fail Anal Prev 13(4):1–11CrossRef Kannan P, Amirthagadeswaran KS, Christopher T, Rao BN (2013) Failures of high- temperature critical components in combined cycle power plants. J Fail Anal Prev 13(4):1–11CrossRef
19.
Zurück zum Zitat Fallah V, Alimardani M, Corbin SF, Khajepour A (2019) Impact of localized surface preheating on the microstructure and crack formation in laser direct deposition of Stellite 1 on AISI 4340 steel. Appl Surf Sci 257:1716–1723CrossRef Fallah V, Alimardani M, Corbin SF, Khajepour A (2019) Impact of localized surface preheating on the microstructure and crack formation in laser direct deposition of Stellite 1 on AISI 4340 steel. Appl Surf Sci 257:1716–1723CrossRef
20.
Zurück zum Zitat Alimardani M, Fallah V, Khajepour A, Toyserkani E (2010) The effect of localized dynamic surface preheating in laser cladding of Stellite 1. Surf Coat Technol 204:3911–3919CrossRef Alimardani M, Fallah V, Khajepour A, Toyserkani E (2010) The effect of localized dynamic surface preheating in laser cladding of Stellite 1. Surf Coat Technol 204:3911–3919CrossRef
21.
Zurück zum Zitat Bhattacharya S, Dinda GP, Dasgupta AK, Mazumder J (2011) Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A 528:2309–2318CrossRef Bhattacharya S, Dinda GP, Dasgupta AK, Mazumder J (2011) Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A 528:2309–2318CrossRef
22.
Zurück zum Zitat Draper CW, Mazzoldi P (1986) Laser surface treatment of metals, 1st edn. Martinus Nijhoff Publishers, DordrechtCrossRef Draper CW, Mazzoldi P (1986) Laser surface treatment of metals, 1st edn. Martinus Nijhoff Publishers, DordrechtCrossRef
23.
Zurück zum Zitat Lourenç JM, Sun SD, Sharp K, Luzin V, Klein AN, Wang CH, Brand M (2016) Fatigue and fracture behavior of laser clad repair of AerMet_ 100 ultra-high strength steel. Int J Fatigue 85(2016):18–30CrossRef Lourenç JM, Sun SD, Sharp K, Luzin V, Klein AN, Wang CH, Brand M (2016) Fatigue and fracture behavior of laser clad repair of AerMet_ 100 ultra-high strength steel. Int J Fatigue 85(2016):18–30CrossRef
24.
Zurück zum Zitat Wen P, Cai Z, Feng Z, Wang G (2015) Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel. Opt Laser Technol 75:207–213CrossRef Wen P, Cai Z, Feng Z, Wang G (2015) Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel. Opt Laser Technol 75:207–213CrossRef
25.
Zurück zum Zitat Pinkerton AJ, Wang W, Li L (2008) Component repair using laser direct metal deposition. In: Proceedings IMechE, vol 222 Part B, pp 827–836. (J. Eng Manuf) Pinkerton AJ, Wang W, Li L (2008) Component repair using laser direct metal deposition. In: Proceedings IMechE, vol 222 Part B, pp 827–836. (J. Eng Manuf)
27.
Zurück zum Zitat Wang Y, Zheng H, Tang K, Li H, Gong S (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82:1–9 Wang Y, Zheng H, Tang K, Li H, Gong S (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82:1–9
28.
Zurück zum Zitat Dey ND (2014) Additive manufacturing laser deposition of Ti-6Al-4V for aerospace repair application. Master Thesis, Missouri University of Science and Technology Dey ND (2014) Additive manufacturing laser deposition of Ti-6Al-4V for aerospace repair application. Master Thesis, Missouri University of Science and Technology
29.
Zurück zum Zitat Capello E, Colombo D, Previtali B (2005) Repairing of sintered tools using laser cladding by wire. J Mater Process Technol 164–165:990–1000CrossRef Capello E, Colombo D, Previtali B (2005) Repairing of sintered tools using laser cladding by wire. J Mater Process Technol 164–165:990–1000CrossRef
30.
Zurück zum Zitat Leunda J, Soriano C, Sanz C, Navas VG (2011) Laser cladding of vanadium-carbide tool steels for die repair. Phys Procedia 12:345–352CrossRef Leunda J, Soriano C, Sanz C, Navas VG (2011) Laser cladding of vanadium-carbide tool steels for die repair. Phys Procedia 12:345–352CrossRef
31.
Zurück zum Zitat Kattire P, Paul S, Singh R, Yan W (2015) Experimental characterization of laser cladding of CPM 9 V on H13 tool steel for die repair applications. J Manuf Process 20(3):492–499CrossRef Kattire P, Paul S, Singh R, Yan W (2015) Experimental characterization of laser cladding of CPM 9 V on H13 tool steel for die repair applications. J Manuf Process 20(3):492–499CrossRef
32.
Zurück zum Zitat Torims T (2013) The application of laser cladding to mechanical component repair, Renovation and Regeneration. In: Katalinic B, Tekic Z (eds) DAAAM international scientific book. DAAAM International, pp 587–608 Torims T (2013) The application of laser cladding to mechanical component repair, Renovation and Regeneration. In: Katalinic B, Tekic Z (eds) DAAAM international scientific book. DAAAM International, pp 587–608
33.
Zurück zum Zitat Bendeich P, Alam N, Brandt M, Carr D, Short K, Blevins R, Curfs C, Kirstein O, Atkinson G, Holden T, Rogge R (2006) Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry. Mater Sci Eng A 437(1):70–74CrossRef Bendeich P, Alam N, Brandt M, Carr D, Short K, Blevins R, Curfs C, Kirstein O, Atkinson G, Holden T, Rogge R (2006) Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry. Mater Sci Eng A 437(1):70–74CrossRef
34.
Zurück zum Zitat Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surf Sci 252:7934–7940CrossRef Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surf Sci 252:7934–7940CrossRef
35.
Zurück zum Zitat Koehler H, Partes K, Seefeld T, Vollertsen F (2010) Laser reconditioning of crankshafts: from lab to application. Phys Procedia Part A 5: 387–397 Koehler H, Partes K, Seefeld T, Vollertsen F (2010) Laser reconditioning of crankshafts: from lab to application. Phys Procedia Part A 5: 387–397
36.
Zurück zum Zitat Nowotny S (2011) Current use of laser technology for build-up welding applications. Surf Eng 27(4):231–233 Nowotny S (2011) Current use of laser technology for build-up welding applications. Surf Eng 27(4):231–233
37.
Zurück zum Zitat Torims T (2013) Laser cladding device for in-situ repairs of marine crankshafts. Adv Mater Res 712–715:709–714CrossRef Torims T (2013) Laser cladding device for in-situ repairs of marine crankshafts. Adv Mater Res 712–715:709–714CrossRef
38.
Zurück zum Zitat Torims T. (2013) Device and method for the in-situ repair and renovation of crankshaft journal surfaces by means of laser build-up. Patent of the Republic of Latvia no. B24B5/42 Torims T. (2013) Device and method for the in-situ repair and renovation of crankshaft journal surfaces by means of laser build-up. Patent of the Republic of Latvia no. B24B5/42
39.
Zurück zum Zitat Vishnevetskaya IA, Denisov VA, Solovyov AV (1996) Tribotechnical efficiency of journal-bearing connection of crankshaft renewed by laser built-up welding. Proc SPIE 2713(301):301–305CrossRef Vishnevetskaya IA, Denisov VA, Solovyov AV (1996) Tribotechnical efficiency of journal-bearing connection of crankshaft renewed by laser built-up welding. Proc SPIE 2713(301):301–305CrossRef
41.
Zurück zum Zitat Woodyard D (ed) (2009) Pounder’s marine diesel engines and gas turbines, 9th edn. Butterworth Heinemann, Oxford Woodyard D (ed) (2009) Pounder’s marine diesel engines and gas turbines, 9th edn. Butterworth Heinemann, Oxford
42.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410CrossRef Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410CrossRef
43.
Zurück zum Zitat Jhavar S, Paul CP, Jain NK (2014) Causes of failure and repairing options for dies and molds: a review. Eng Fail Anal 34:519–535CrossRef Jhavar S, Paul CP, Jain NK (2014) Causes of failure and repairing options for dies and molds: a review. Eng Fail Anal 34:519–535CrossRef
44.
Zurück zum Zitat Paul CP, Bhargava P, Kumar A, Pathak AK, Kukreja LM (2014) Laser rapid manufacturing: technology, applications, modeling and future prospects. In: Paulo Davim J (ed) Lasers in Manufacturing. Wiley-ISTE, UK Paul CP, Bhargava P, Kumar A, Pathak AK, Kukreja LM (2014) Laser rapid manufacturing: technology, applications, modeling and future prospects. In: Paulo Davim J (ed) Lasers in Manufacturing. Wiley-ISTE, UK
45.
Zurück zum Zitat Gu D (2015) Laser additive manufacturing (am): classification, processing philosophy, and metallurgical mechanisms. In: Laser additive manufacturing of high-performance materials. Springer, Berlin Heidelberg Gu D (2015) Laser additive manufacturing (am): classification, processing philosophy, and metallurgical mechanisms. In: Laser additive manufacturing of high-performance materials. Springer, Berlin Heidelberg
46.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the world congress on engineering (2012), WCE 2012, vol. III. London, U.K, 4–6 July 2012, pp 1593–1597 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the world congress on engineering (2012), WCE 2012, vol. III. London, U.K, 4–6 July 2012, pp 1593–1597
47.
Zurück zum Zitat Shukla M, Mahamood RM, Akinlabi ET, Pityana S (2012) Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad Sci Technol 6:44–48 Shukla M, Mahamood RM, Akinlabi ET, Pityana S (2012) Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad Sci Technol 6:44–48
48.
Zurück zum Zitat Nan LL, Liu WJ, Zhang K (2010) Laser remanufacturing based on the integration of reverse engineering and laser cladding. Int J Comput Appl Technol 37(2):116–124CrossRef Nan LL, Liu WJ, Zhang K (2010) Laser remanufacturing based on the integration of reverse engineering and laser cladding. Int J Comput Appl Technol 37(2):116–124CrossRef
50.
Zurück zum Zitat Plourde R (2003) Laser-based repair system reclaims high value military components. In: RTO AVT specialists’ meeting on the control and reduction of wear in military platforms. Williamsburg, USA, 7–9 June 2003. (published in RTO-MP-AVT-109 1-4) Plourde R (2003) Laser-based repair system reclaims high value military components. In: RTO AVT specialists’ meeting on the control and reduction of wear in military platforms. Williamsburg, USA, 7–9 June 2003. (published in RTO-MP-AVT-109 1-4)
51.
Zurück zum Zitat Dutta B, Singh V, Natu H, Choi J, Mazumder J (2009) Direct metal deposition six-axis direct metal deposition technology enables creation/coating of new parts or remanufacturing of damaged parts with near net-shape. Adv Mater Process:29–31 Dutta B, Singh V, Natu H, Choi J, Mazumder J (2009) Direct metal deposition six-axis direct metal deposition technology enables creation/coating of new parts or remanufacturing of damaged parts with near net-shape. Adv Mater Process:29–31
52.
Zurück zum Zitat Lund B (1996) The remanufacturing industry: hidden giant. Boston University Press, Boston, MA Lund B (1996) The remanufacturing industry: hidden giant. Boston University Press, Boston, MA
53.
Zurück zum Zitat Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80(1):170–178CrossRef Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80(1):170–178CrossRef
54.
Zurück zum Zitat Gao J, Yilmaz O, Noble D, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36:1170–1179CrossRef Gao J, Yilmaz O, Noble D, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36:1170–1179CrossRef
55.
Zurück zum Zitat Gao J, Chen X, Zheng D (2010) Remanufacturing oriented adaptive repair system for worn components. In: Proceedings of Responsive Manufacturing Green Manufacturing ICRM, 5th International Conference, pp 13–18 Gao J, Chen X, Zheng D (2010) Remanufacturing oriented adaptive repair system for worn components. In: Proceedings of Responsive Manufacturing Green Manufacturing ICRM, 5th International Conference, pp 13–18
56.
Zurück zum Zitat Bremer C (2005) Automated repair and overhaul of aero-engine and industrial gas turbine components. In: Proceedings of the ASME turbo expo. Reno-Tahoe, Nevada, USA Bremer C (2005) Automated repair and overhaul of aero-engine and industrial gas turbine components. In: Proceedings of the ASME turbo expo. Reno-Tahoe, Nevada, USA
57.
Zurück zum Zitat Hamed A, Tabakoff W, Wenglarz R (2006) Erosion and deposition in turbomachinery. J Propul Power 22:350–360CrossRef Hamed A, Tabakoff W, Wenglarz R (2006) Erosion and deposition in turbomachinery. J Propul Power 22:350–360CrossRef
58.
Zurück zum Zitat Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aeroengine components. Robot Comput Integr Manuf 26(2):190–201CrossRef Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aeroengine components. Robot Comput Integr Manuf 26(2):190–201CrossRef
59.
Zurück zum Zitat Yilmaz O, Noble D, Gao J (2005) A study of turbomachinery components machining and repairing methodologies. Aircr Eng Aerosp Technol Int J 77(6):455–466CrossRef Yilmaz O, Noble D, Gao J (2005) A study of turbomachinery components machining and repairing methodologies. Aircr Eng Aerosp Technol Int J 77(6):455–466CrossRef
60.
61.
Zurück zum Zitat Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Tech. 70:919–928CrossRef Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Tech. 70:919–928CrossRef
62.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of processing parameters on the porosity properties of laser deposited titanium alloy. In: International multi-conference of engineering and computer science (IMECS 2014) Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of processing parameters on the porosity properties of laser deposited titanium alloy. In: International multi-conference of engineering and computer science (IMECS 2014)
63.
Zurück zum Zitat Hedges M, Calder N (2006) Near net shape rapid manufacture & repair by LENS. In: Proceedings of cost effective manufacture via net-shape processing. Neuilly-sur-Seine, France, pp 13–21 Hedges M, Calder N (2006) Near net shape rapid manufacture & repair by LENS. In: Proceedings of cost effective manufacture via net-shape processing. Neuilly-sur-Seine, France, pp 13–21
65.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178
Metadaten
Titel
Laser Metal Deposition Process for Product Remanufacturing
verfasst von
Rasheedat M. Mahamood
Esther T. Akinlabi
Moses G. Owolabi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56099-1_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.