Skip to main content

2019 | OriginalPaper | Buchkapitel

18. Micromorphic Crystal Plasticity

verfasst von : Samuel Forest, J. R. Mayeur, D. L. McDowell

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The micromorphic approach to crystal plasticity represents an extension of the micropolar (Cosserat) framework, which is presented in a separate chapter. Cosserat crystal plasticity is contained as a special constrained case in the same way as the Cosserat theory is a special restricted case of Eringen's micromorphic model, as explained also in a separate chapter. The micromorphic theory is presented along the lines of Aslan et al. (Int J Eng Sci 49:1311–1325, 2011) and Forest et al. (Micromorphic approach to crystal plasticity and phase transformation. In: Schroeder J, Hackl K (eds) Plasticity and beyond. CISM international centre for mechanical sciences, courses and lectures, vol 550, Springer, pp 131–198, 2014) and compared to the micropolar model in some applications. These extensions of conventional crystal plasticity aim at incorporating the dislocation density tensor introduced by Kröner (Initial studies of a plasticity theory based upon statistical mechanics. In: Kanninen M, Adler W, Rosenfield A, Jaffee R (eds) Inelastic behaviour of solids. McGraw-Hill, pp 137–147, 1969). and Cermelli and Gurtin (J Mech Phys Solids 49:1539–1568, 2001) into the constitutive framework. The concept of dislocation density tensor is equivalent to that of the so-called geometrically necessary dislocations (GND) introduced by Ashby (The deformation of plastically non-homogeneous alloys. In: Kelly A, Nicholson R (eds) Strengthening methods in crystals. Applied Science Publishers, London, pp 137–192, 1971). The applications presented in this chapter deal with pile-up formation in laminate microstructures and strain localization phenomena in polycrystals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat E. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)CrossRef E. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)CrossRef
Zurück zum Zitat R.J. Asaro, Elastic–plastic memory and kinematic hardening. Acta Metall. 23, 1255–1265 (1975)CrossRef R.J. Asaro, Elastic–plastic memory and kinematic hardening. Acta Metall. 23, 1255–1265 (1975)CrossRef
Zurück zum Zitat Ashby, M., 1971. The deformation of plastically non-homogeneous alloys, in Strengthening Methods in Crystals, ed. by A. Kelly, R. Nicholson (Applied Science Publishers, London), pp. 137–192 Ashby, M., 1971. The deformation of plastically non-homogeneous alloys, in Strengthening Methods in Crystals, ed. by A. Kelly, R. Nicholson (Applied Science Publishers, London), pp. 137–192
Zurück zum Zitat O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)MathSciNetCrossRef O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)MathSciNetCrossRef
Zurück zum Zitat V. Bennett, D. McDowell, Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Eng. Fract. Mech. 70(2), 185–207 (2003)CrossRef V. Bennett, D. McDowell, Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Eng. Fract. Mech. 70(2), 185–207 (2003)CrossRef
Zurück zum Zitat V. Berdichevsky, On thermodynamics of crystal plasticity. Scripta Mat. 54, 711–716 (2006a)CrossRef V. Berdichevsky, On thermodynamics of crystal plasticity. Scripta Mat. 54, 711–716 (2006a)CrossRef
Zurück zum Zitat V. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006b)CrossRef V. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006b)CrossRef
Zurück zum Zitat P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)CrossRef P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)CrossRef
Zurück zum Zitat H.J. Chang, N.M. Cordero, C. Déprés, M. Fivel, S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch. Appl. Mech. 86, 21–38 (2016)CrossRef H.J. Chang, N.M. Cordero, C. Déprés, M. Fivel, S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch. Appl. Mech. 86, 21–38 (2016)CrossRef
Zurück zum Zitat W. Claus, A. Eringen, Three dislocation concepts and micromorphic mechanics, in Developments in Mechanics. Proceedings of the 12th Midwestern Mechanics Conference, vol. 6, (1969), pp. 349–358 W. Claus, A. Eringen, Three dislocation concepts and micromorphic mechanics, in Developments in Mechanics. Proceedings of the 12th Midwestern Mechanics Conference, vol. 6, (1969), pp. 349–358
Zurück zum Zitat S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)MathSciNetCrossRef S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)MathSciNetCrossRef
Zurück zum Zitat N. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two–phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010a)MathSciNetCrossRef N. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two–phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010a)MathSciNetCrossRef
Zurück zum Zitat N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010b)MathSciNetCrossRef N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010b)MathSciNetCrossRef
Zurück zum Zitat N.M. Cordero, S. Forest, E. Busso, S. Berbenni, M. Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Comput. Mater. Sci. 52, 7–13 (2012)CrossRef N.M. Cordero, S. Forest, E. Busso, S. Berbenni, M. Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Comput. Mater. Sci. 52, 7–13 (2012)CrossRef
Zurück zum Zitat L. De Luca, A. Garroni, M. Ponsiglione, Gamma-convergence analysis of Systems of Edge Dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206, 885–910 (2012)MathSciNetCrossRef L. De Luca, A. Garroni, M. Ponsiglione, Gamma-convergence analysis of Systems of Edge Dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206, 885–910 (2012)MathSciNetCrossRef
Zurück zum Zitat C. Déprés, C.F. Robertson, M.C. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. Dislocation microstructures and mechanical behaviour. Philos. Mag. 84(22), 2257–2275 (2004)CrossRef C. Déprés, C.F. Robertson, M.C. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. Dislocation microstructures and mechanical behaviour. Philos. Mag. 84(22), 2257–2275 (2004)CrossRef
Zurück zum Zitat Eringen, A., Claus, W., 1970. A micromorphic approach to dislocation theory and its relation to several existing theories, in Fundamental Aspects of Dislocation Theory, ed. by J. Simmons, R. de Wit, R. Bullough. National Bureau of Standards (US) Special Publication 317, vol. II (U.S. Government Printing Office, Washington, DC), pp. 1023–1062 Eringen, A., Claus, W., 1970. A micromorphic approach to dislocation theory and its relation to several existing theories, in Fundamental Aspects of Dislocation Theory, ed. by J. Simmons, R. de Wit, R. Bullough. National Bureau of Standards (US) Special Publication 317, vol. II (U.S. Government Printing Office, Washington, DC), pp. 1023–1062
Zurück zum Zitat B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int. J. Mech. Sci. 18, 1–49 (2002)MATH B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int. J. Mech. Sci. 18, 1–49 (2002)MATH
Zurück zum Zitat S. Forest, Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)CrossRef S. Forest, Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)CrossRef
Zurück zum Zitat S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)CrossRef S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)CrossRef
Zurück zum Zitat S. Forest, Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)CrossRef S. Forest, Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)CrossRef
Zurück zum Zitat S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003a)CrossRef S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003a)CrossRef
Zurück zum Zitat S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003b)CrossRef S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003b)CrossRef
Zurück zum Zitat S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)CrossRef S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)CrossRef
Zurück zum Zitat S. Forest, F. Pradel, K. Sab, Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)MathSciNetCrossRef S. Forest, F. Pradel, K. Sab, Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)MathSciNetCrossRef
Zurück zum Zitat Forest, S., Ammar, K., Appolaire, B., Cordero, N., Gaubert, A., 2014. Micromorphic approach to crystal plasticity and phase transformation, in Plasticity and Beyond, ed. by J. Schroeder, K. Hackl. CISM International Centre for Mechanical Sciences, Courses and Lectures, no. 550 (Springer, Vienna), pp. 131–198CrossRef Forest, S., Ammar, K., Appolaire, B., Cordero, N., Gaubert, A., 2014. Micromorphic approach to crystal plasticity and phase transformation, in Plasticity and Beyond, ed. by J. Schroeder, K. Hackl. CISM International Centre for Mechanical Sciences, Courses and Lectures, no. 550 (Springer, Vienna), pp. 131–198CrossRef
Zurück zum Zitat M. Geers, R. Peerlings, M. Peletier, L. Scardia, Asymptotic behaviour of a pile–up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)MathSciNetCrossRef M. Geers, R. Peerlings, M. Peletier, L. Scardia, Asymptotic behaviour of a pile–up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)MathSciNetCrossRef
Zurück zum Zitat P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)CrossRef P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)CrossRef
Zurück zum Zitat P. Grammenoudis, C. Tsakmakis, Micromorphic continuum part I: strain and stress tensors and their associated rates. Int. J. Non–Linear Mech. 44, 943–956 (2009)CrossRef P. Grammenoudis, C. Tsakmakis, Micromorphic continuum part I: strain and stress tensors and their associated rates. Int. J. Non–Linear Mech. 44, 943–956 (2009)CrossRef
Zurück zum Zitat I. Groma, F. Csikor, M. Zaiser, Spatial correlations and higher–order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)CrossRef I. Groma, F. Csikor, M. Zaiser, Spatial correlations and higher–order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)CrossRef
Zurück zum Zitat I. Groma, G. Györgyi, B. Kocsis, Dynamics of coarse grain grained dislocation densities from an effective free energy. Philos. Mag. 87, 1185–1199 (2007)CrossRef I. Groma, G. Györgyi, B. Kocsis, Dynamics of coarse grain grained dislocation densities from an effective free energy. Philos. Mag. 87, 1185–1199 (2007)CrossRef
Zurück zum Zitat M. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef M. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef
Zurück zum Zitat M. Gurtin, L. Anand, Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J. Mech. Phys. Solids 56, 184–199 (2008)MathSciNetCrossRef M. Gurtin, L. Anand, Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J. Mech. Phys. Solids 56, 184–199 (2008)MathSciNetCrossRef
Zurück zum Zitat M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)MathSciNetCrossRef M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)MathSciNetCrossRef
Zurück zum Zitat W. Han, B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 2013)CrossRef W. Han, B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 2013)CrossRef
Zurück zum Zitat C. Hirschberger, P. Steinmann, Classification of concepts in thermodynamically consistent generalized plasticity. ASCE J. Eng.Mech. 135, 156–170 (2009)CrossRef C. Hirschberger, P. Steinmann, Classification of concepts in thermodynamically consistent generalized plasticity. ASCE J. Eng.Mech. 135, 156–170 (2009)CrossRef
Zurück zum Zitat D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60(8), 1432–1446 (2012)MathSciNetCrossRef D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60(8), 1432–1446 (2012)MathSciNetCrossRef
Zurück zum Zitat D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93(1), 66–79 (2013)MathSciNetCrossRef D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93(1), 66–79 (2013)MathSciNetCrossRef
Zurück zum Zitat R. Kametani, K. Kodera, D. Okumura, N. Ohno, Implicit iterative finite element scheme for a strain gradient crystal plasticity model based on self-energy of geometrically necessary dislocations. Comput. Mater. Sci. 53(1), 53–59 (2012)CrossRef R. Kametani, K. Kodera, D. Okumura, N. Ohno, Implicit iterative finite element scheme for a strain gradient crystal plasticity model based on self-energy of geometrically necessary dislocations. Comput. Mater. Sci. 53(1), 53–59 (2012)CrossRef
Zurück zum Zitat Kröner, E., 1969. Initial studies of a plasticity theory based upon statistical mechanics, in Inelastic Behaviour of Solids, ed. by M. Kanninen, W. Adler, A. Rosenfield, R. Jaffee (McGraw-Hill, New York/London), pp. 137–147 Kröner, E., 1969. Initial studies of a plasticity theory based upon statistical mechanics, in Inelastic Behaviour of Solids, ed. by M. Kanninen, W. Adler, A. Rosenfield, R. Jaffee (McGraw-Hill, New York/London), pp. 137–147
Zurück zum Zitat J. Lee, Y. Chen, Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41, 387–399 (2003)MathSciNetCrossRef J. Lee, Y. Chen, Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41, 387–399 (2003)MathSciNetCrossRef
Zurück zum Zitat J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)CrossRef J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)CrossRef
Zurück zum Zitat L. Méric, P. Poubanne, G. Cailletaud, Single crystal modeling for structural calculations. Part 1: Model presentation. J. Eng. Mat. Technol. 113, 162–170 (1991)CrossRef L. Méric, P. Poubanne, G. Cailletaud, Single crystal modeling for structural calculations. Part 1: Model presentation. J. Eng. Mat. Technol. 113, 162–170 (1991)CrossRef
Zurück zum Zitat S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)MathSciNetCrossRef S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)MathSciNetCrossRef
Zurück zum Zitat S. Mesarovic, S. Forest, J. Jaric, Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471, 20140868 (2015)MathSciNetCrossRef S. Mesarovic, S. Forest, J. Jaric, Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471, 20140868 (2015)MathSciNetCrossRef
Zurück zum Zitat C. Miehe, S. Mauthe, F.E. Hildebrand, Variational gradient plasticity at finite strains. Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)MathSciNetCrossRef C. Miehe, S. Mauthe, F.E. Hildebrand, Variational gradient plasticity at finite strains. Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)MathSciNetCrossRef
Zurück zum Zitat J. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef J. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef
Zurück zum Zitat N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)MathSciNetCrossRef N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)MathSciNetCrossRef
Zurück zum Zitat N. Ohno, D. Okumura, Grain–size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)CrossRef N. Ohno, D. Okumura, Grain–size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)CrossRef
Zurück zum Zitat M. Ortiz, E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)MathSciNetCrossRef M. Ortiz, E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)MathSciNetCrossRef
Zurück zum Zitat H. Proudhon, W. Poole, X. Wang, Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA611. Philos. Mag. 88, 621–640 (2008)CrossRef H. Proudhon, W. Poole, X. Wang, Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA611. Philos. Mag. 88, 621–640 (2008)CrossRef
Zurück zum Zitat B.D. Reddy, C. Wieners, B. Wohlmuth, Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90(6), 784–804 (2012)MathSciNetCrossRef B.D. Reddy, C. Wieners, B. Wohlmuth, Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90(6), 784–804 (2012)MathSciNetCrossRef
Zurück zum Zitat R. Regueiro, On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2010)CrossRef R. Regueiro, On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2010)CrossRef
Zurück zum Zitat C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)CrossRef C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)CrossRef
Zurück zum Zitat P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34, 1717–1735 (1996)CrossRef P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34, 1717–1735 (1996)CrossRef
Zurück zum Zitat R. Stoltz, R. Pelloux, Cyclic deformation and Bauschinger effect in Al–Cu–Mg alloys. Scr. Metall. 8, 269–276 (1974)CrossRef R. Stoltz, R. Pelloux, Cyclic deformation and Bauschinger effect in Al–Cu–Mg alloys. Scr. Metall. 8, 269–276 (1974)CrossRef
Zurück zum Zitat R. Stoltz, R. Pelloux, The Bauschinger effect in precipitation strengthened aluminum alloys. Metallurgical. Transactions 7A, 1295–1306 (1976) R. Stoltz, R. Pelloux, The Bauschinger effect in precipitation strengthened aluminum alloys. Metallurgical. Transactions 7A, 1295–1306 (1976)
Zurück zum Zitat B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58(9), 1253–1271 (2010)MathSciNetCrossRef B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58(9), 1253–1271 (2010)MathSciNetCrossRef
Zurück zum Zitat R. Taillard, A. Pineau, Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56, 219–231 (1982)CrossRef R. Taillard, A. Pineau, Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56, 219–231 (1982)CrossRef
Zurück zum Zitat S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2682–2703 (2012)MathSciNetCrossRef S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2682–2703 (2012)MathSciNetCrossRef
Zurück zum Zitat S. Wulfinghoff, E. Bayerschen, T. Böhlke, A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013a)CrossRef S. Wulfinghoff, E. Bayerschen, T. Böhlke, A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013a)CrossRef
Zurück zum Zitat S. Wulfinghoff, E. Bayerschen, T. Böhlke, Micromechanical simulation of the hall-petch effect with a crystal gradient theory including a grain boundary yield criterion. PAMM 13, 15–18 (2013b)CrossRef S. Wulfinghoff, E. Bayerschen, T. Böhlke, Micromechanical simulation of the hall-petch effect with a crystal gradient theory including a grain boundary yield criterion. PAMM 13, 15–18 (2013b)CrossRef
Zurück zum Zitat S. Wulfinghoff, S. Forest, T. Böhlke, Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015)MathSciNetCrossRef S. Wulfinghoff, S. Forest, T. Böhlke, Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015)MathSciNetCrossRef
Zurück zum Zitat A. Zeghadi, S. Forest, A.-F. Gourgues, O. Bouaziz, Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure–part 2: crystal plasticity. Philos. Mag. 87, 1425–1446 (2007)CrossRef A. Zeghadi, S. Forest, A.-F. Gourgues, O. Bouaziz, Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure–part 2: crystal plasticity. Philos. Mag. 87, 1425–1446 (2007)CrossRef
Metadaten
Titel
Micromorphic Crystal Plasticity
verfasst von
Samuel Forest
J. R. Mayeur
D. L. McDowell
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_49

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.