Skip to main content

2018 | OriginalPaper | Buchkapitel

Surface Finish Improvement of Additive Manufactured Metal Parts

verfasst von : Hany Hassanin, Amr Elshaer, Redha Benhadj-Djilali, Francesco Modica, Irene Fassi

Erschienen in: Micro and Precision Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unlike materials subtractive technologies, additive manufacturing (AM) works on producing near-net-shape components according to a specific design at which the synthesis is achieved layer by layer. Additive manufacturing allows design freedom, making design-driven manufacturing a reality. However, its poor surface quality is considered as one of the key challenges that are worth to overcome. The main objective of this chapter is to report a comprehensive overview of the techniques used to improve the surface finish and their advancements of products made by metal additive manufacturing (AM) technologies and to highlight experimental processes and data. Powder bed fusion (PBF) and direct laser deposition (DLD) are the main processes covered in this review. The chapter starts with the literature review and introduction to the main metal AM processes and their surface roughness limitations, the effect of their parameters and the effect of the laser re-melting on the surface quality. Next, it is followed by a number of surface finishing techniques such as laser polishing, chemical and electropolishing. Experimental results of post-surface finishing of AM parts by microelectrical discharge machining are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip Miniaturisation Chem Biol 16:1720–1742CrossRef Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip Miniaturisation Chem Biol 16:1720–1742CrossRef
2.
Zurück zum Zitat Daly A (2016) Socio-legal aspects of the 3D printing revolution Daly A (2016) Socio-legal aspects of the 3D printing revolution
3.
Zurück zum Zitat Wirth M, Thiesse F (2014) Shapeways and the 3D printing revolution. In: ECIS 2014 Proceedings—22nd European Conference on Information Systems Wirth M, Thiesse F (2014) Shapeways and the 3D printing revolution. In: ECIS 2014 Proceedings—22nd European Conference on Information Systems
4.
Zurück zum Zitat UK Government Office for Science and Department for Business Innovationand Skills, The future of manufacturing: a new era of opportunity and challenge for the UK., 2013 UK Government Office for Science and Department for Business Innovationand Skills, The future of manufacturing: a new era of opportunity and challenge for the UK., 2013
5.
Zurück zum Zitat Cox SC, Jamshidi P, Eisenstein NM, Webber MA, Hassanin H, Attallah MM et al (2016) Adding functionality with additive manufacturing: fabrication of titanium-based antibiotic eluting implants. Mater Sci Eng, C 64:407–415CrossRef Cox SC, Jamshidi P, Eisenstein NM, Webber MA, Hassanin H, Attallah MM et al (2016) Adding functionality with additive manufacturing: fabrication of titanium-based antibiotic eluting implants. Mater Sci Eng, C 64:407–415CrossRef
6.
Zurück zum Zitat Li S, Hassanin H, Attallah MM, Adkins NJE, Essa K (2016) The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater 105:75–83CrossRef Li S, Hassanin H, Attallah MM, Adkins NJE, Essa K (2016) The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater 105:75–83CrossRef
7.
Zurück zum Zitat Qiu C, Adkins NJE, Hassanin H, Attallah MM, Essa K (2015) In-situ shelling via selective laser melting: modelling and microstructural characterisation. Mater Des 87:845–853CrossRef Qiu C, Adkins NJE, Hassanin H, Attallah MM, Essa K (2015) In-situ shelling via selective laser melting: modelling and microstructural characterisation. Mater Des 87:845–853CrossRef
8.
Zurück zum Zitat Qiu C, Yue S, Adkins NJE, Ward M, Hassanin H, Lee PD et al (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater Sci Eng, A 628:188–197CrossRef Qiu C, Yue S, Adkins NJE, Ward M, Hassanin H, Lee PD et al (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater Sci Eng, A 628:188–197CrossRef
9.
Zurück zum Zitat Yeh CC (2014) Trend analysis for the market and application development of 3D printing. Int J Autom Smart Technol 4:1–3CrossRef Yeh CC (2014) Trend analysis for the market and application development of 3D printing. Int J Autom Smart Technol 4:1–3CrossRef
10.
Zurück zum Zitat Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68:747–764CrossRef Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68:747–764CrossRef
11.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef
12.
Zurück zum Zitat Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef
13.
Zurück zum Zitat Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE et al (2015) Review of selective laser melting: Materials and applications. Appl Phys Rev 2 Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE et al (2015) Review of selective laser melting: Materials and applications. Appl Phys Rev 2
14.
Zurück zum Zitat Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61:361–377CrossRef Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61:361–377CrossRef
15.
Zurück zum Zitat Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control. Add Manuf 8:12–35 Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control. Add Manuf 8:12–35
16.
Zurück zum Zitat Jones J, Whittaker M, Buckingham R, Johnston R, Bache M, Clark D (2017) Microstructural characterisation of a nickel alloy processed via blown powder direct laser deposition (DLD). Mater Des 117:47–57CrossRef Jones J, Whittaker M, Buckingham R, Johnston R, Bache M, Clark D (2017) Microstructural characterisation of a nickel alloy processed via blown powder direct laser deposition (DLD). Mater Des 117:47–57CrossRef
17.
Zurück zum Zitat Isanaka SP, Karnati S, Liou F (2016) Blown powder deposition of 4047 aluminum on 2024 aluminum substrates. Manuf Lett 7:11–14CrossRef Isanaka SP, Karnati S, Liou F (2016) Blown powder deposition of 4047 aluminum on 2024 aluminum substrates. Manuf Lett 7:11–14CrossRef
18.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481CrossRef
19.
Zurück zum Zitat Lancea C, Chicos LA, Zaharia SM, Pop MA (2017) Microstructure and micro-hardness analyses of titanium alloy Ti-6Al-4V parts manufactured by selective laser melting. In: MATEC Web of Conferences Lancea C, Chicos LA, Zaharia SM, Pop MA (2017) Microstructure and micro-hardness analyses of titanium alloy Ti-6Al-4V parts manufactured by selective laser melting. In: MATEC Web of Conferences
20.
Zurück zum Zitat Agapovichev AV, Kokareva VV, Smelov VG, Sotov AV (2016) Selective laser melting of titanium alloy: investigation of mechanical properties and microstructure. In: IOP Conference Series: Materials Science and Engineering Agapovichev AV, Kokareva VV, Smelov VG, Sotov AV (2016) Selective laser melting of titanium alloy: investigation of mechanical properties and microstructure. In: IOP Conference Series: Materials Science and Engineering
21.
Zurück zum Zitat Bassani P, Biffi CA, Casati R, Alarcon AZ, Tuissi A, Vedani M (2016) Properties of aluminium alloys produced by selective laser melting. In: Key Engineering Materials, vol 710, pp 83–88 Bassani P, Biffi CA, Casati R, Alarcon AZ, Tuissi A, Vedani M (2016) Properties of aluminium alloys produced by selective laser melting. In: Key Engineering Materials, vol 710, pp 83–88
22.
Zurück zum Zitat Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci 74:401–477CrossRef Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci 74:401–477CrossRef
23.
Zurück zum Zitat Lykov PA, Baitimerov RM, Vaulin SD (2016) Influence of SLM process parameters on porosity of nickel base heat resistance alloy EP648. In: Materials Science Forum, vol 843, pp 253–258 Lykov PA, Baitimerov RM, Vaulin SD (2016) Influence of SLM process parameters on porosity of nickel base heat resistance alloy EP648. In: Materials Science Forum, vol 843, pp 253–258
24.
Zurück zum Zitat Carter LN, Martin C, Withers PJ, Attallah MM (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloy Compd 615:338–347CrossRef Carter LN, Martin C, Withers PJ, Attallah MM (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloy Compd 615:338–347CrossRef
25.
Zurück zum Zitat Sander J, Hufenbach J, Bleckmann M, Giebeler L, Wendrock H, Oswald S et al (2017) Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. J Mater Sci 52:4944–4956CrossRef Sander J, Hufenbach J, Bleckmann M, Giebeler L, Wendrock H, Oswald S et al (2017) Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. J Mater Sci 52:4944–4956CrossRef
26.
Zurück zum Zitat Yusuf SM, Chen Y, Boardman R, Yang S, Gao N (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals 7 Yusuf SM, Chen Y, Boardman R, Yang S, Gao N (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals 7
27.
Zurück zum Zitat Song B, Dong SJ, Liao HL, Coddet C (2012) Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting. Mater Res Innovations 16:321–325CrossRef Song B, Dong SJ, Liao HL, Coddet C (2012) Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting. Mater Res Innovations 16:321–325CrossRef
28.
Zurück zum Zitat Kotoban DV, Nazarov AP, Shishkovsky IV (2015) Comparative study of selective laser melting and direct laser metal deposition of Ni<inf>3</inf>Al intermetallic alloy. In: Materials Science Forum, vol 834, pp 103–111 Kotoban DV, Nazarov AP, Shishkovsky IV (2015) Comparative study of selective laser melting and direct laser metal deposition of Ni<inf>3</inf>Al intermetallic alloy. In: Materials Science Forum, vol 834, pp 103–111
29.
Zurück zum Zitat Gu D, Dai D, Chen W, Chen H (2016) Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng Trans ASME 138 Gu D, Dai D, Chen W, Chen H (2016) Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng Trans ASME 138
30.
Zurück zum Zitat Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610CrossRef Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610CrossRef
31.
Zurück zum Zitat Hrabe N, Gnäupel-Herold T, Quinn T (2017) Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): effects of internal defects and residual stress. Int J Fatigue 94:202–210CrossRef Hrabe N, Gnäupel-Herold T, Quinn T (2017) Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): effects of internal defects and residual stress. Int J Fatigue 94:202–210CrossRef
32.
Zurück zum Zitat Algardh JK, Horn T, West H, Aman R, Snis A, Engqvist H et al (2016) Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron Beam Melting (EBM)®. Additive Manufacturing 12:45–50CrossRef Algardh JK, Horn T, West H, Aman R, Snis A, Engqvist H et al (2016) Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron Beam Melting (EBM)®. Additive Manufacturing 12:45–50CrossRef
33.
Zurück zum Zitat Ramsperger M, Singer RF, Körner C (2016) Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall Mater Trans A 47:1469–1480CrossRef Ramsperger M, Singer RF, Körner C (2016) Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall Mater Trans A 47:1469–1480CrossRef
34.
Zurück zum Zitat Zhong Y, Rännar LE, Liu L, Koptyug A, Wikman S, Olsen J et al (2017) Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater 486:234–245CrossRef Zhong Y, Rännar LE, Liu L, Koptyug A, Wikman S, Olsen J et al (2017) Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater 486:234–245CrossRef
35.
Zurück zum Zitat Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34:397–414 Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34:397–414
36.
Zurück zum Zitat Miller S, Heath M, Woods B, Costello A, Dolan D, Sears J (2005) Fabrication of titanium automotive parts with Laser Powder Deposition. In: MPMD sixth global innovations proceedings—trends in materials and manufacturing technologies for transportation industries and powder metall. Research and development in the transportation industry, pp 293–301 Miller S, Heath M, Woods B, Costello A, Dolan D, Sears J (2005) Fabrication of titanium automotive parts with Laser Powder Deposition. In: MPMD sixth global innovations proceedings—trends in materials and manufacturing technologies for transportation industries and powder metall. Research and development in the transportation industry, pp 293–301
37.
Zurück zum Zitat Riza SH, Masood SH, Wen C, Ruan D, Xu S (2014) Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition. Mater Des 64:650–659CrossRef Riza SH, Masood SH, Wen C, Ruan D, Xu S (2014) Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition. Mater Des 64:650–659CrossRef
38.
Zurück zum Zitat Yan A, Yang T, Wang Y, Ma Z, Du Y, Wang Z (2016) Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting. Zhongguo Jiguang/Chin J Lasers 43 Yan A, Yang T, Wang Y, Ma Z, Du Y, Wang Z (2016) Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting. Zhongguo Jiguang/Chin J Lasers 43
39.
Zurück zum Zitat Wendt U, Settegast S, Grodrian IU (2003) Laser alloying of aluminum with titanium wire. J Mater Sci Lett 22:1319–1322CrossRef Wendt U, Settegast S, Grodrian IU (2003) Laser alloying of aluminum with titanium wire. J Mater Sci Lett 22:1319–1322CrossRef
40.
Zurück zum Zitat Zhang YN, Cao X, Wanjara P (2015) Fiber laser deposition of nickel-based superalloys using filler wire feed. In: Proceedings of the ASME turbo expo Zhang YN, Cao X, Wanjara P (2015) Fiber laser deposition of nickel-based superalloys using filler wire feed. In: Proceedings of the ASME turbo expo
41.
Zurück zum Zitat Nie Z, Wang G, McGuffin-Cawley JD, Narayanan B, Zhang S, Schwam D et al (2016) Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol 235:171–186CrossRef Nie Z, Wang G, McGuffin-Cawley JD, Narayanan B, Zhang S, Schwam D et al (2016) Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol 235:171–186CrossRef
42.
Zurück zum Zitat Ghanekar A, Crawford R (2003) Optimization of SLS process parameters using D-optimality. 4th international solid freeform fabrication symposium. Austin, Texas, USA, p 348 Ghanekar A, Crawford R (2003) Optimization of SLS process parameters using D-optimality. 4th international solid freeform fabrication symposium. Austin, Texas, USA, p 348
43.
Zurück zum Zitat Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:2743–2751CrossRef Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:2743–2751CrossRef
44.
Zurück zum Zitat Bacchewar PB, Singhal SK, Pandey PM (2007) Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng, Part B: J Eng Manuf 221:35–52CrossRef Bacchewar PB, Singhal SK, Pandey PM (2007) Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng, Part B: J Eng Manuf 221:35–52CrossRef
45.
Zurück zum Zitat Kaddar W (2010) “Die generative Fertigung mittels Laser Sintern,” Ph.D., Abteilung Maschinenbau und Verfahrenstechnik Universität Duisburg-Essen Kaddar W (2010) “Die generative Fertigung mittels Laser Sintern,” Ph.D., Abteilung Maschinenbau und Verfahrenstechnik Universität Duisburg-Essen
46.
Zurück zum Zitat Ek RK, Rännar L-E, Bäckstöm M, Carlsson P (2016) The effect of EBM process parameters upon surface roughness. Rapid Prototyping J 22:495–503CrossRef Ek RK, Rännar L-E, Bäckstöm M, Carlsson P (2016) The effect of EBM process parameters upon surface roughness. Rapid Prototyping J 22:495–503CrossRef
47.
Zurück zum Zitat Safdar A, He HZ, Wei LY, Snis A, de Paz LEC (2012) Effect of process parameters settings and thickness on surface roughness of EBM produced Ti‐6Al‐4V. Rapid Prototyping J 18:401–408 Safdar A, He HZ, Wei LY, Snis A, de Paz LEC (2012) Effect of process parameters settings and thickness on surface roughness of EBM produced Ti‐6Al‐4V. Rapid Prototyping J 18:401–408
48.
Zurück zum Zitat Kleszczynski S, Ladewig A, Friedberger K, zur Jacobsmühlen J, Merhof D, Witt G (2015) Position dependency of surface roughness in parts from laser beam melting systems. In: 26th International Solid Free Form Fabrication (SFF) Symposium, USA, pp 360–370 Kleszczynski S, Ladewig A, Friedberger K, zur Jacobsmühlen J, Merhof D, Witt G (2015) Position dependency of surface roughness in parts from laser beam melting systems. In: 26th International Solid Free Form Fabrication (SFF) Symposium, USA, pp 360–370
49.
Zurück zum Zitat Mahdi J, Radovan K (2015) The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing. Surf Topogr: Metrol Prop 3:014003CrossRef Mahdi J, Radovan K (2015) The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing. Surf Topogr: Metrol Prop 3:014003CrossRef
50.
Zurück zum Zitat Vinod AR, Srinivasa CK, Keshavamurthy R, Shashikumar PV (2016) A novel technique for reducing lead-time and energy consumption in fabrication of Inconel-625 parts by laser-based metal deposition process. Rapid Prototyping J 22:269–280CrossRef Vinod AR, Srinivasa CK, Keshavamurthy R, Shashikumar PV (2016) A novel technique for reducing lead-time and energy consumption in fabrication of Inconel-625 parts by laser-based metal deposition process. Rapid Prototyping J 22:269–280CrossRef
51.
Zurück zum Zitat Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P et al (2013) Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. J Mater Process Technol 213:791–800 Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P et al (2013) Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. J Mater Process Technol 213:791–800
52.
Zurück zum Zitat Nowotny S, Thieme S, Albert D, Kubisch F, Kager R, Leyens C (2013) Generative manufacturing and repair of metal parts through direct laser deposition using wire material. In: Kovács GL, Kochan D (eds) Digital product and process development systems: IFIP TC 5 international conference, NEW PROLAMAT 2013, Dresden, Germany, 10–11 Oct 2013. Springer, Berlin, pp 185–189 Nowotny S, Thieme S, Albert D, Kubisch F, Kager R, Leyens C (2013) Generative manufacturing and repair of metal parts through direct laser deposition using wire material. In: Kovács GL, Kochan D (eds) Digital product and process development systems: IFIP TC 5 international conference, NEW PROLAMAT 2013, Dresden, Germany, 10–11 Oct 2013. Springer, Berlin, pp 185–189
53.
Zurück zum Zitat Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148CrossRef Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148CrossRef
54.
Zurück zum Zitat Smith BH, See T, Hiersemenzel F, Kaja K, Antar M (2016) Laser polishing of additive manufactured steel and titanium components. In: Proceedings—ASPE/euspen 2016 summer topical meeting: dimensional accuracy and surface finish in additive manufacturing, pp 22–27 Smith BH, See T, Hiersemenzel F, Kaja K, Antar M (2016) Laser polishing of additive manufactured steel and titanium components. In: Proceedings—ASPE/euspen 2016 summer topical meeting: dimensional accuracy and surface finish in additive manufacturing, pp 22–27
55.
Zurück zum Zitat Ross I, Kumstel J, Bremen S, Willenborg E (2015) Laser polishing of laser additive manufactured surfaces made from Inconel 718 and ASTM F75. In: Proceedings—ASPE 2015 spring topical meeting: achieving precision tolerances in additive manufacturing, pp 136–140 Ross I, Kumstel J, Bremen S, Willenborg E (2015) Laser polishing of laser additive manufactured surfaces made from Inconel 718 and ASTM F75. In: Proceedings—ASPE 2015 spring topical meeting: achieving precision tolerances in additive manufacturing, pp 136–140
56.
Zurück zum Zitat Ma CP, Guan YC, Zhou W (2017) Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 93:171–177 Ma CP, Guan YC, Zhou W (2017) Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 93:171–177
57.
Zurück zum Zitat Schanz J, Hofele M, Hitzler L, Merkel M, Riegel H (2016) Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. In: Advanced Structured Materials, vol 61, pp 159–169 Schanz J, Hofele M, Hitzler L, Merkel M, Riegel H (2016) Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. In: Advanced Structured Materials, vol 61, pp 159–169
58.
Zurück zum Zitat Rosa B, Mognol P, Hascoët J-Y (2015) Laser polishing of additive laser manufacturing surfaces. J Laser Appl 27:S29102CrossRef Rosa B, Mognol P, Hascoët J-Y (2015) Laser polishing of additive laser manufacturing surfaces. J Laser Appl 27:S29102CrossRef
59.
Zurück zum Zitat Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyping 5:215–221CrossRef Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyping 5:215–221CrossRef
60.
Zurück zum Zitat Marimuthu S, Triantaphyllou A, Antar M, Wimpenny D, Morton H, Beard M (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104CrossRef Marimuthu S, Triantaphyllou A, Antar M, Wimpenny D, Morton H, Beard M (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104CrossRef
61.
Zurück zum Zitat Burzic B, Hofele M, Mürdter S, Riegel H (2017) Laser polishing of ground aluminum surfaces with high continuous wave laser. J Laser Appl 29 Burzic B, Hofele M, Mürdter S, Riegel H (2017) Laser polishing of ground aluminum surfaces with high continuous wave laser. J Laser Appl 29
62.
Zurück zum Zitat Bhaduri D, Penchev P, Batal A, Dimov S, Soo SL, Sten S et al (2017) Laser polishing of 3D printed mesoscale components. Appl Surf Sci 405:29–46CrossRef Bhaduri D, Penchev P, Batal A, Dimov S, Soo SL, Sten S et al (2017) Laser polishing of 3D printed mesoscale components. Appl Surf Sci 405:29–46CrossRef
63.
Zurück zum Zitat Chang CS, Chen TH, Li TC, Lin SL, Liu SH, Lin JF (2016) Influence of laser beam fluence on surface quality, microstructure, mechanical properties, and tribological results for laser polishing of SKD61 tool steel. J Mater Process Technol 229:22–35CrossRef Chang CS, Chen TH, Li TC, Lin SL, Liu SH, Lin JF (2016) Influence of laser beam fluence on surface quality, microstructure, mechanical properties, and tribological results for laser polishing of SKD61 tool steel. J Mater Process Technol 229:22–35CrossRef
64.
Zurück zum Zitat Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR (2014) Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73:35–52CrossRef Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR (2014) Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73:35–52CrossRef
65.
Zurück zum Zitat Łyczkowska E, Szymczyk P, Dybała B, Chlebus E (2014) Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch Civil Mech Eng 14:586–594 Łyczkowska E, Szymczyk P, Dybała B, Chlebus E (2014) Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch Civil Mech Eng 14:586–594
66.
Zurück zum Zitat Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J et al (2012) Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 14:363–370CrossRef Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J et al (2012) Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 14:363–370CrossRef
67.
Zurück zum Zitat Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A (2016) Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design. J Mater Eng Perform 25:2836–2846CrossRef Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A (2016) Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design. J Mater Eng Perform 25:2836–2846CrossRef
68.
Zurück zum Zitat Modica F, Marrocco V, Fassi I (2012) Machining of ceramic Si3N4-TiN scaffolds using micro-EDM. In: proceeding of 1st International Conference on Design and PROcesses for MEdical Device, pp 139–142 Modica F, Marrocco V, Fassi I (2012) Machining of ceramic Si3N4-TiN scaffolds using micro-EDM. In: proceeding of 1st International Conference on Design and PROcesses for MEdical Device, pp 139–142
69.
Zurück zum Zitat Tiwary AP, Pradhan BB, Bhattacharyya B (2015) Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. Int J Adv Manuf Technol 76:151–160 Tiwary AP, Pradhan BB, Bhattacharyya B (2015) Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. Int J Adv Manuf Technol 76:151–160
70.
Zurück zum Zitat Maradia U, Scuderi M, Knaak R, Boccadoro M, Beltrami I, Stirnimann J et al (2013) Super-finished Surfaces using Meso-micro EDM. Procedia CIRP 6:157–162 Maradia U, Scuderi M, Knaak R, Boccadoro M, Beltrami I, Stirnimann J et al (2013) Super-finished Surfaces using Meso-micro EDM. Procedia CIRP 6:157–162
71.
Zurück zum Zitat Yu ZY, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities—development of uniform wear method. CIRP Ann Manuf Technol 47:169–172 Yu ZY, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities—development of uniform wear method. CIRP Ann Manuf Technol 47:169–172
72.
Zurück zum Zitat Modica F, Basile V, Marrocco V, Fassi I (2016) A new process combining micro-electro-discharge-machining milling and sinking for fast fabrication of microchannels with draft angle. J Micro Nano-Manuf 4:024501 Modica F, Basile V, Marrocco V, Fassi I (2016) A new process combining micro-electro-discharge-machining milling and sinking for fast fabrication of microchannels with draft angle. J Micro Nano-Manuf 4:024501
Metadaten
Titel
Surface Finish Improvement of Additive Manufactured Metal Parts
verfasst von
Hany Hassanin
Amr Elshaer
Redha Benhadj-Djilali
Francesco Modica
Irene Fassi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68801-5_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.