Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Non-contact Welding Technologies: Solid-State Welding

verfasst von : Rasheedat Modupe Mahamood, Esther Titilayo Akinlabi

Erschienen in: Advanced Noncontact Cutting and Joining Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid-state non-contact joining technology is an advanced joining method that does not involve melting of the workpiece and there is no direct contact between the tool and the workpiece. Ultrasonic welding, friction welding, explosive welding and resistance welding are the four non-contact solid-state welding techniques that are discussed in this chapter. The principle of operations, advantages, disadvantages and areas of applications of each of these advanced welding techniques are explained. Some of the research works in this area are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.L. Ni, F.X. Ye, Weldability and mechanical properties of ultrasonic welded aluminum to nickel joints. Mater. Lett. 185, 204–207 (2016)CrossRef Z.L. Ni, F.X. Ye, Weldability and mechanical properties of ultrasonic welded aluminum to nickel joints. Mater. Lett. 185, 204–207 (2016)CrossRef
2.
Zurück zum Zitat Z.L. Ni, F.X. Ye, Ultrasonic spot welding of Al sheets by enhancing the temperature of weld interface. Mater. Lett. 208, 69–72 (2017)CrossRef Z.L. Ni, F.X. Ye, Ultrasonic spot welding of Al sheets by enhancing the temperature of weld interface. Mater. Lett. 208, 69–72 (2017)CrossRef
4.
Zurück zum Zitat M. de Leon, H.-S. Shin, Weldability assessment of Mg alloy (AZ31B) sheets by an ultrasonicspot welding method. J. Mater. Process. Technol. 243, 1–8 (2017)CrossRef M. de Leon, H.-S. Shin, Weldability assessment of Mg alloy (AZ31B) sheets by an ultrasonicspot welding method. J. Mater. Process. Technol. 243, 1–8 (2017)CrossRef
5.
Zurück zum Zitat K. Wang, L. Yang, M. Banu, J. Li, W. Guo, H. Khan, Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 246, 116–122 (2017)CrossRef K. Wang, L. Yang, M. Banu, J. Li, W. Guo, H. Khan, Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 246, 116–122 (2017)CrossRef
7.
Zurück zum Zitat D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr. Mater. 126, 58–62 (2017)CrossRef D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr. Mater. 126, 58–62 (2017)CrossRef
9.
Zurück zum Zitat U. Parmar, D.H. Pandya, Experimental investigation of ultrasonic welding on non-metallic material. Procedia Technol. 23, 551–557 (2016)CrossRef U. Parmar, D.H. Pandya, Experimental investigation of ultrasonic welding on non-metallic material. Procedia Technol. 23, 551–557 (2016)CrossRef
10.
Zurück zum Zitat S.I. Minin, Technology of thermal welding with ultrasonic weld joint treatment as applied to NPP formworks. Nucl. Energ. Technol. 3(3), 216–219 (2017.) ISSN 2452-3038MathSciNetCrossRef S.I. Minin, Technology of thermal welding with ultrasonic weld joint treatment as applied to NPP formworks. Nucl. Energ. Technol. 3(3), 216–219 (2017.) ISSN 2452-3038MathSciNetCrossRef
11.
Zurück zum Zitat K. Wang, D. Shriver, Y. Li, M. Banu, S. Jack Hu, G. Xiao, J. Arinez, H.-T. Fan, Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 29, 124–132 (2017)CrossRef K. Wang, D. Shriver, Y. Li, M. Banu, S. Jack Hu, G. Xiao, J. Arinez, H.-T. Fan, Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 29, 124–132 (2017)CrossRef
12.
Zurück zum Zitat W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric composite film. J. Mater. Process. Technol. 236, 183–188 (2016)CrossRef W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric composite film. J. Mater. Process. Technol. 236, 183–188 (2016)CrossRef
13.
Zurück zum Zitat N. Shen, A. Samanta, H. Ding, W.W. Cai, Simulating microstructure evolution of ultrasonic welding of battery tabs. Procedia Manuf. 5, 399–416 (2016)CrossRef N. Shen, A. Samanta, H. Ding, W.W. Cai, Simulating microstructure evolution of ultrasonic welding of battery tabs. Procedia Manuf. 5, 399–416 (2016)CrossRef
14.
Zurück zum Zitat R. Palanivel, I. Dinaharan, R.F. Laubscher, Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes. Mater. Sci. Eng. A 687, 249–258 (2017)CrossRef R. Palanivel, I. Dinaharan, R.F. Laubscher, Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes. Mater. Sci. Eng. A 687, 249–258 (2017)CrossRef
15.
Zurück zum Zitat X.Y. Wang, W.Y. Li, T.J. Ma, A. Vairis, Characterisation studies of linear friction welded titanium joints. Mater. Design 116, 115–126 (2017)CrossRef X.Y. Wang, W.Y. Li, T.J. Ma, A. Vairis, Characterisation studies of linear friction welded titanium joints. Mater. Design 116, 115–126 (2017)CrossRef
16.
Zurück zum Zitat M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. J. Manuf. Process. 25, 116–125 (2017)CrossRef M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. J. Manuf. Process. 25, 116–125 (2017)CrossRef
17.
Zurück zum Zitat O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, Effect of process parameters on process efficiency and inertia friction welding behavior of the superalloys LSHR and Mar-M247. J Mater. Process. Technol. 250, 156–168 (2017)CrossRef O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, Effect of process parameters on process efficiency and inertia friction welding behavior of the superalloys LSHR and Mar-M247. J Mater. Process. Technol. 250, 156–168 (2017)CrossRef
18.
Zurück zum Zitat H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, A. Hirose, High-frequency linear friction welding of aluminum alloys. Mater. Design 139, 457–466 (2018)CrossRef H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, A. Hirose, High-frequency linear friction welding of aluminum alloys. Mater. Design 139, 457–466 (2018)CrossRef
19.
Zurück zum Zitat M. Meisnar, S. Baker, J.M. Bennett, A. Bernad, A. Mostafa, S. Resch, N. Fernandes, A. Norman, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater. Design 132, 188–197 (2017)CrossRef M. Meisnar, S. Baker, J.M. Bennett, A. Bernad, A. Mostafa, S. Resch, N. Fernandes, A. Norman, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater. Design 132, 188–197 (2017)CrossRef
20.
Zurück zum Zitat F. Sarsilmaz, I. Kirik, S. Batı, Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J. Manuf. Process. 28(Part 1), 131–136 (2017)CrossRef F. Sarsilmaz, I. Kirik, S. Batı, Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J. Manuf. Process. 28(Part 1), 131–136 (2017)CrossRef
21.
Zurück zum Zitat E.-o. Bouarroudj, S. Chikh, S. Abdi, D. Miroud, Thermal analysis during a rotational friction welding. Appl. Therm. Eng. 110, 1543–1553 (2017)CrossRef E.-o. Bouarroudj, S. Chikh, S. Abdi, D. Miroud, Thermal analysis during a rotational friction welding. Appl. Therm. Eng. 110, 1543–1553 (2017)CrossRef
22.
Zurück zum Zitat R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Optimization of friction welding process parameters for joining carbon steel and stainless steel. J. Iron Steel Res. Int. 19(1), 66–71 (2012)CrossRef R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Optimization of friction welding process parameters for joining carbon steel and stainless steel. J. Iron Steel Res. Int. 19(1), 66–71 (2012)CrossRef
23.
Zurück zum Zitat M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel. J. Manuf. Process. 26, 178–187 (2017)CrossRef M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel. J. Manuf. Process. 26, 178–187 (2017)CrossRef
24.
Zurück zum Zitat R. Winiczenko, O. Goroch, A. Krzyńska, M. Kaczorowski, Friction welding of tungsten heavy alloy with aluminium alloy. J. Mater. Process. Technol. 246, 42–55 (2017)CrossRef R. Winiczenko, O. Goroch, A. Krzyńska, M. Kaczorowski, Friction welding of tungsten heavy alloy with aluminium alloy. J. Mater. Process. Technol. 246, 42–55 (2017)CrossRef
25.
Zurück zum Zitat F.C. Liu, T.W. Nelson, Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of Alloy 718. Mater. Sci. Eng. A. 710, 280–288 (2018)CrossRef F.C. Liu, T.W. Nelson, Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of Alloy 718. Mater. Sci. Eng. A. 710, 280–288 (2018)CrossRef
26.
Zurück zum Zitat A.R. McAndrew, P.A. Colegrove, C. Bühr, B.C.D. Flipo, A. Vairis, A literature review of Ti-6Al-4V linear friction welding. Prog. Mater. Sci. 92, 225–257 (2018)CrossRef A.R. McAndrew, P.A. Colegrove, C. Bühr, B.C.D. Flipo, A. Vairis, A literature review of Ti-6Al-4V linear friction welding. Prog. Mater. Sci. 92, 225–257 (2018)CrossRef
27.
Zurück zum Zitat J. Teng, D. Wang, Z. Wang, X. Zhang, Y. Li, J. Cao, X. Wei, F. Yang, Repair of arc welded DH36 joint by underwater friction stitch welding. Mater. Design 118, 266–278 (2017)CrossRef J. Teng, D. Wang, Z. Wang, X. Zhang, Y. Li, J. Cao, X. Wei, F. Yang, Repair of arc welded DH36 joint by underwater friction stitch welding. Mater. Design 118, 266–278 (2017)CrossRef
28.
Zurück zum Zitat R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. B Eng. 132, 244–257 (2018)CrossRef R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. B Eng. 132, 244–257 (2018)CrossRef
29.
Zurück zum Zitat F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A 710, 214–226 (2018)CrossRef F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A 710, 214–226 (2018)CrossRef
30.
Zurück zum Zitat C. Meengam, S. Chainarong, P. Muangjunburee, Friction welding of semi-solid metal 7075 aluminum alloy. Mater. Today Proceed. 4(2 Part A), 1303–1311 (2017)CrossRef C. Meengam, S. Chainarong, P. Muangjunburee, Friction welding of semi-solid metal 7075 aluminum alloy. Mater. Today Proceed. 4(2 Part A), 1303–1311 (2017)CrossRef
32.
Zurück zum Zitat V. Shokri, A. Sadeghi, M.H. Sadeghi, Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J. Manuf. Process. 31, 46–55 (2018)CrossRef V. Shokri, A. Sadeghi, M.H. Sadeghi, Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J. Manuf. Process. 31, 46–55 (2018)CrossRef
33.
Zurück zum Zitat B. Gülenç, Y. Kaya, A. Durgutlu, İ.T. Gülenç, M.S. Yıldırım, N. Kahraman, Production of wire reinforced composite materials through explosive welding. Arch. Civil Mech. Eng. 16(1), 1–8 (2016)CrossRef B. Gülenç, Y. Kaya, A. Durgutlu, İ.T. Gülenç, M.S. Yıldırım, N. Kahraman, Production of wire reinforced composite materials through explosive welding. Arch. Civil Mech. Eng. 16(1), 1–8 (2016)CrossRef
34.
Zurück zum Zitat D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Design 91, 80–89 (2016)CrossRef D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Design 91, 80–89 (2016)CrossRef
35.
Zurück zum Zitat A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Design 95, 256–267 (2016)CrossRef A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Design 95, 256–267 (2016)CrossRef
36.
Zurück zum Zitat D. Boroński, M. Kotyk, P. Maćkowiak, L. Śnieżek, Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater. Design 133, 390–403 (2017)CrossRef D. Boroński, M. Kotyk, P. Maćkowiak, L. Śnieżek, Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater. Design 133, 390–403 (2017)CrossRef
37.
Zurück zum Zitat D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Design 102, 122–130 (2016)CrossRef D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Design 102, 122–130 (2016)CrossRef
38.
Zurück zum Zitat I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, A.M. Jorge Junior, Explosively welded multilayer Ni–Al composites. Mater. Design 88, 1082–1087 (2015)CrossRef I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, A.M. Jorge Junior, Explosively welded multilayer Ni–Al composites. Mater. Design 88, 1082–1087 (2015)CrossRef
39.
Zurück zum Zitat M. Prażmowski, D. Rozumek, H. Paul, Static and fatigue tests of bimetal Zr-steel made by explosive welding. Eng. Failure Anal. 75, 71–81 (2017)CrossRef M. Prażmowski, D. Rozumek, H. Paul, Static and fatigue tests of bimetal Zr-steel made by explosive welding. Eng. Failure Anal. 75, 71–81 (2017)CrossRef
41.
Zurück zum Zitat Q. Chu, M. Zhang, J. Li, Y. Cheng, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 689, 323–331 (2017)CrossRef Q. Chu, M. Zhang, J. Li, Y. Cheng, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 689, 323–331 (2017)CrossRef
42.
Zurück zum Zitat G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Design 122, 172–183 (2017)CrossRef G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Design 122, 172–183 (2017)CrossRef
43.
Zurück zum Zitat D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater. Lett. 198, 160–163 (2017)CrossRef D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater. Lett. 198, 160–163 (2017)CrossRef
44.
Zurück zum Zitat V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding. J. Mater. Process. Technol. 222, 356–364 (2015)CrossRef V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding. J. Mater. Process. Technol. 222, 356–364 (2015)CrossRef
45.
Zurück zum Zitat S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota. Forging of Mg/Al bimetallic handle using explosive welded feedstock. Archives of Civil and Mechanical Engineering, 18(2), 401–412 (2018)CrossRef S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota. Forging of Mg/Al bimetallic handle using explosive welded feedstock. Archives of Civil and Mechanical Engineering, 18(2), 401–412 (2018)CrossRef
46.
Zurück zum Zitat S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota, Forging of Mg/Al bimetallic handle using explosive welded feedstock. Arch. Civil Mech. Eng. 18(2), 401–412 (2018)CrossRef S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota, Forging of Mg/Al bimetallic handle using explosive welded feedstock. Arch. Civil Mech. Eng. 18(2), 401–412 (2018)CrossRef
47.
Zurück zum Zitat C. Choi, P. Tan, D. Ruan, B. Dixon, A new concept of universal substitutive explosive welding. Mater. Design 115, 393–403 (2017)CrossRef C. Choi, P. Tan, D. Ruan, B. Dixon, A new concept of universal substitutive explosive welding. Mater. Design 115, 393–403 (2017)CrossRef
48.
Zurück zum Zitat C.-g. Shi, X. Yang, Y.-h. Ge, J. You, H.-b. Hou, Lower limit law of welding windows for explosive welding of dissimilar metals. J. Iron Steel Res. Int. 24(8), 852–857 (2017)CrossRef C.-g. Shi, X. Yang, Y.-h. Ge, J. You, H.-b. Hou, Lower limit law of welding windows for explosive welding of dissimilar metals. J. Iron Steel Res. Int. 24(8), 852–857 (2017)CrossRef
49.
Zurück zum Zitat P. Corigliano, V. Crupi, E. Guglielmino, A.M. Sili, Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Marine Struct. 57, 207–218 (2018)CrossRef P. Corigliano, V. Crupi, E. Guglielmino, A.M. Sili, Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Marine Struct. 57, 207–218 (2018)CrossRef
50.
Zurück zum Zitat I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Materialia 135, 277–289 (2017)CrossRef I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Materialia 135, 277–289 (2017)CrossRef
51.
Zurück zum Zitat A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium. Ciência Tecnologia dos Materiais 29(1), e46–e50 (2017)CrossRef A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium. Ciência Tecnologia dos Materiais 29(1), e46–e50 (2017)CrossRef
52.
Zurück zum Zitat Z. Guoyin, S. Xi, Z. Jinghua, Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Metal Mater. Eng. 46(4), 906–911 (2017)CrossRef Z. Guoyin, S. Xi, Z. Jinghua, Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Metal Mater. Eng. 46(4), 906–911 (2017)CrossRef
53.
Zurück zum Zitat X. Li, H. Ma, Z. Shen, Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Design 87, 815–824 (2015)CrossRef X. Li, H. Ma, Z. Shen, Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Design 87, 815–824 (2015)CrossRef
54.
Zurück zum Zitat S.H.I. Chang-gen, W.A.N.G. Yu, Z.H.A.O. Lin-sheng, H.O.U. Hong-bao, G.E. Yu-heng, Detonation mechanism in double vertical explosive welding of stainless steel/steel. J. Iron Steel Res. Int. 22(10), 949–953 (2015)CrossRef S.H.I. Chang-gen, W.A.N.G. Yu, Z.H.A.O. Lin-sheng, H.O.U. Hong-bao, G.E. Yu-heng, Detonation mechanism in double vertical explosive welding of stainless steel/steel. J. Iron Steel Res. Int. 22(10), 949–953 (2015)CrossRef
55.
Zurück zum Zitat D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater. Design 130, 120–130 (2017)CrossRef D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater. Design 130, 120–130 (2017)CrossRef
56.
Zurück zum Zitat M.M. Hoseini Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Design 86, 516–525 (2015)CrossRef M.M. Hoseini Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Design 86, 516–525 (2015)CrossRef
57.
Zurück zum Zitat L. Liu, Y.-F. Jia, F.-Z. Xuan, Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. In Materials Science and Engineering: A, Volume 704, 493–502 (2017)CrossRef L. Liu, Y.-F. Jia, F.-Z. Xuan, Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. In Materials Science and Engineering: A, Volume 704, 493–502 (2017)CrossRef
58.
Zurück zum Zitat S.M. Manladan, F. Yusof, S. Ramesh, Y. Zhang, Z. Luo, Z. Ling, Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J. Mater. Process. Technol. 250, 45–54 (2017)CrossRef S.M. Manladan, F. Yusof, S. Ramesh, Y. Zhang, Z. Luo, Z. Ling, Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J. Mater. Process. Technol. 250, 45–54 (2017)CrossRef
59.
Zurück zum Zitat Z. Mikno, A. Pilarczyk, M. Korzeniowski, P. Kustroń, A. Ambroziak, Analysis of resistance welding processes and expulsion of liquid metal from the weld nugget. Arch. Civil Mech. Eng. 18(2), 522–531 (2018)CrossRef Z. Mikno, A. Pilarczyk, M. Korzeniowski, P. Kustroń, A. Ambroziak, Analysis of resistance welding processes and expulsion of liquid metal from the weld nugget. Arch. Civil Mech. Eng. 18(2), 522–531 (2018)CrossRef
60.
Zurück zum Zitat Q. Li, Y. Zhu, J. Guo, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. J. Mater. Process. Technol. 249, 538–548 (2017)CrossRef Q. Li, Y. Zhu, J. Guo, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. J. Mater. Process. Technol. 249, 538–548 (2017)CrossRef
61.
Zurück zum Zitat H.C. Lin, C.A. Hsu, C.S. Lee, T.Y. Kuo, S.L. Jeng, Effects of zinc layer thickness on resistance spot welding of galvanized mild steel. J. Mater. Process. Technol. 251, 205–213 (2018)CrossRef H.C. Lin, C.A. Hsu, C.S. Lee, T.Y. Kuo, S.L. Jeng, Effects of zinc layer thickness on resistance spot welding of galvanized mild steel. J. Mater. Process. Technol. 251, 205–213 (2018)CrossRef
62.
Zurück zum Zitat E. Geslain, P. Rogeon, T. Pierre, C. Pouvreau, L. Cretteur, Coating effects on contact conditions in resistance spot weldability. J. Mater. Process. Technol. 253, 160–167 (2018)CrossRef E. Geslain, P. Rogeon, T. Pierre, C. Pouvreau, L. Cretteur, Coating effects on contact conditions in resistance spot weldability. J. Mater. Process. Technol. 253, 160–167 (2018)CrossRef
63.
Zurück zum Zitat X. Wan, Y. Wang, D. Zhao, Y.A. Huang, A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mech. Syst. Signal Process. 93, 634–644 (2017)CrossRef X. Wan, Y. Wang, D. Zhao, Y.A. Huang, A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mech. Syst. Signal Process. 93, 634–644 (2017)CrossRef
64.
Zurück zum Zitat B. Xing, Y. Xiao, Q.H. Qin, Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement. Measurement 115, 233–242 (2018)CrossRef B. Xing, Y. Xiao, Q.H. Qin, Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement. Measurement 115, 233–242 (2018)CrossRef
65.
Zurück zum Zitat X. Wan, Y. Wang, D. Zhao, Y.A. Huang, Z. Yin, Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Measurement 99, 120–127 (2017)CrossRef X. Wan, Y. Wang, D. Zhao, Y.A. Huang, Z. Yin, Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Measurement 99, 120–127 (2017)CrossRef
66.
Zurück zum Zitat N. Koutras, I. Fernandez Villegas, R. Benedictus, Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Compos. A Appl. Sci. Manuf. 105, 57–67 (2018)CrossRef N. Koutras, I. Fernandez Villegas, R. Benedictus, Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Compos. A Appl. Sci. Manuf. 105, 57–67 (2018)CrossRef
67.
Zurück zum Zitat S. Wu, B. Ghaffari, E. Hetrick, M. Li, Q. Liu, Z. Jia, Thermo-mechanically affected zone in AA6111 resistance spot welds. J. Mater. Process. Technol. 249, 463–470 (2017)CrossRef S. Wu, B. Ghaffari, E. Hetrick, M. Li, Q. Liu, Z. Jia, Thermo-mechanically affected zone in AA6111 resistance spot welds. J. Mater. Process. Technol. 249, 463–470 (2017)CrossRef
68.
Zurück zum Zitat S.S. Rao, R. Chhibber, K.S. Arora, M. Shome, Resistance spot welding of galvannealed high strength interstitial free steel. J. Mater. Process. Technol. 246, 252–261 (2017)CrossRef S.S. Rao, R. Chhibber, K.S. Arora, M. Shome, Resistance spot welding of galvannealed high strength interstitial free steel. J. Mater. Process. Technol. 246, 252–261 (2017)CrossRef
Metadaten
Titel
Non-contact Welding Technologies: Solid-State Welding
verfasst von
Rasheedat Modupe Mahamood
Esther Titilayo Akinlabi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-75118-4_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.