Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Automorphic Forms and Hecke Operators

verfasst von : Gaëtan Chenevier, Jean Lannes

Erschienen in: Automorphic Forms and Even Unimodular Lattices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We first introduce the Hecke ring of a \(\mathbb {Z}\)-group G and discuss it basic properties (local-global structure, compatibility with isogenies, criterion for commutativity…). An elementary description of the Hecke rings of classical groups is given. Then, we recall the notion of a square integrable automorphic form for G, and that of a discrete automorphic representation of G. When G is the symplectic group Sp2g, we explain how the theory of Siegel modular forms fits into this picture. We also show how the p-neighbor problem for even unimodular lattices in rank n may be viewed as a question about automorphic representations for the orthogonal \(\mathbb {Z}\)-group On.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The assertions h(SLn) = h(Sp2g) = 1 recalled above are also very particular cases of Kneser’s strong approximation theorem (see [123], [162, Theorem 7.12]). It asserts that we have h(G) = 1 whenever the \(\mathbb {C}\)-group \(G_{\mathbb {C}}\) is semisimple and simply connected and the topological group \(G(\mathbb {R})\) does not have a nontrivial connected, compact, normal subgroup.
 
2
This property is not automatic if X is infinite. Consider, for example, the group https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-95891-0_4/447588_1_En_4_IEq274_HTML.gif of affine transformations of \(\mathbb {Q}\) and the Γ-set X consisting of the subsets of \(\mathbb {Q}\) of the form \(a\mathbb {Z}+b\) with \(a \in \mathbb {Q}^\times \) and \(b \in \mathbb {Q}\).
 
3
We refer to the article of Satake for a variant without the injectivity assumption on g. The reader will not miss much in the current discussion by assuming Γ ⊂ Γ′ and X ⊂ X′, with f and g the corresponding inclusions.
 
4
At this point, it is useful to recall the following version of Schur’s lemma. Let U and V be Hilbert spaces endowed with unitary representations of a group Γ. We assume that U is topologically irreducible and that u: U → V is a nonzero, Γ-equivariant, continuous linear map. Then the adjoint u : V → U (which is Γ-equivariant) satisfies u ∘ u = λIdU for some \(\lambda \in \mathbb {R}^\times \). Indeed, u ∘ u ∈End(U) is Hermitian and nonzero and commutes with Γ; by the spectral theorem, its spectrum is therefore reduced to a point {λ}. It follows that V is the orthogonal sum of Im(u) (which is closed) and Ker(u ).
 
5
The reader should be aware that the definition we use here depends not only on \(G_{\mathbb {Q}}\) but also on G as a \(\mathbb {Z}\)-group. In the literature, our discrete automorphic representations are more commonly called “discrete automorphic representations of \(G(\mathbb {A})\) that are spherical (or unramified) with respect to \(G(\widehat {\mathbb {Z}})\).” The apparent loss of generality in our presentation is, however, at this point illusory, because every open compact subgroup of \(G(\mathbb {A}_f)\) is of the form \(G'(\widehat {\mathbb {Z}})\) for a well-chosen \(\mathbb {Z}\)-group G′ with \(G^{\prime }_{\mathbb {Q}} \simeq G_{\mathbb {Q}}\).
 
6
In fact, a famous result of Godement shows that under this same hypothesis on G, the group \(G(\mathbb {Q})\) is cocompact in \(G(\mathbb {A})\), which implies the equality \(\mathcal {A}_{\mathrm{disc}}(G)={\mathcal {A}^2}(G)\) more directly in this specific case (see, for example, [35, Lemma 16.1]).
 
7
A principal polarization on a lattice \(L \subset \mathbb {C}^g\) consists of a nondegenerate alternating bilinear form \(\eta \colon L \times L \rightarrow \mathbb {Z}\) whose extension of scalars \(\eta _{\mathbb {R}}\) to \(L \otimes \mathbb {R} = \mathbb {C}^g\) satisfies \(\eta _{\mathbb {R}}(ix,iy)=\eta _{\mathbb {R}}(x,y)\) for every \(x,y \in \mathbb {C}^g\) and whose associated Hermitian form \((x,y) \mapsto \eta _{\mathbb {R}}(ix,y)+i\eta _{\mathbb {R}}(x,y)\) on \(\mathbb {C}^g\) is positive definite. Riemann’s theory allows us to naturally identify \({\mathrm{Sp}}_{2g}(\mathbb {Z})\backslash \mathbb {H}_g\) with the set of \(\mathrm {GL}_g(\mathbb {C})\)-orbits of pairs (L, η), where \(L \subset \mathbb {C}^g\) is a lattice and η is a principal polarization on L.
 
Literatur
5.
Zurück zum Zitat A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren math. Wiss., vol. 286 (Springer-Verlag, 1987). A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren math. Wiss., vol. 286 (Springer-Verlag, 1987).
14.
Zurück zum Zitat M. Asgari, R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), pp. 173–200.MathSciNetCrossRef M. Asgari, R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), pp. 173–200.MathSciNetCrossRef
29.
Zurück zum Zitat R. Borcherds, The Leech lattice and other lattices, Ph. D. dissertation, Univ. of Cambridge (1984). R. Borcherds, The Leech lattice and other lattices, Ph. D. dissertation, Univ. of Cambridge (1984).
32.
Zurück zum Zitat A. Borel, Some finiteness theorems for adele groups over number fields, Publ. Math. de l’I.H.É.S. 16 (1963), pp. 101–126. A. Borel, Some finiteness theorems for adele groups over number fields, Publ. Math. de l’I.H.É.S. 16 (1963), pp. 101–126.
34.
Zurück zum Zitat A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math., vol. 126 (Springer Verlag, 1991). A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math., vol. 126 (Springer Verlag, 1991).
35.
Zurück zum Zitat A. Borel, Automorphic forms on \(\mbox{SL}_2(\mathbb {R})\), Cambridge Tracts in Math., vol. 130 (Cambridge Univ. Press, 1997). A. Borel, Automorphic forms on \(\mbox{SL}_2(\mathbb {R})\), Cambridge Tracts in Math., vol. 130 (Cambridge Univ. Press, 1997).
36.
Zurück zum Zitat A. Borel, H. Jacquet, Automorphic forms and automorphic representation (Oregon State Univ., Corvallis, Ore.), in Automorphic forms, representations and L-functions, II, Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 189–203. A. Borel, H. Jacquet, Automorphic forms and automorphic representation (Oregon State Univ., Corvallis, Ore.), in Automorphic forms, representations and L-functions, II, Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 189–203.
45.
Zurück zum Zitat Variétés analytiques complexes et fonctions automorphes, Séminaire H. Cartan, tome 6 (Éc. Norm. Sup. Paris, 1953/54). Variétés analytiques complexes et fonctions automorphes, Séminaire H. Cartan, tome 6 (Éc. Norm. Sup. Paris, 1953/54).
46.
Zurück zum Zitat Fonctions automorphes, Séminaire H. Cartan, tome 10 (Éc. Norm. Sup. Paris, 1957/58). Fonctions automorphes, Séminaire H. Cartan, tome 10 (Éc. Norm. Sup. Paris, 1957/58).
48.
Zurück zum Zitat P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII, (Amer. Math. Soc., Providence, RI, 1979), pp. 111–157. P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII, (Amer. Math. Soc., Providence, RI, 1979), pp. 111–157.
55.
Zurück zum Zitat G. Chenevier, D. Renard, Level one algebraic cusp form of classical groups of small rank, Mem. Amer. Math. Soc., vol. 1121 (Amer. Math. Soc., Providence, RI, 2015). G. Chenevier, D. Renard, Level one algebraic cusp form of classical groups of small rank, Mem. Amer. Math. Soc., vol. 1121 (Amer. Math. Soc., Providence, RI, 2015).
65.
68.
Zurück zum Zitat J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren math. Wiss., vol. 290 (Springer-Verlag, New York, 1999). J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren math. Wiss., vol. 290 (Springer-Verlag, New York, 1999).
78.
Zurück zum Zitat M. Eichler, Quadratische formen und orthogonal gruppen, Grundlehren math. Wiss. (Springer Verlag, 1952). M. Eichler, Quadratische formen und orthogonal gruppen, Grundlehren math. Wiss. (Springer Verlag, 1952).
88.
Zurück zum Zitat E. Freitag, Siegelsche Modulfunktionen, Grundlehren der math. Wiss., vol. 254 (Springer Verlag, 1983). E. Freitag, Siegelsche Modulfunktionen, Grundlehren der math. Wiss., vol. 254 (Springer Verlag, 1983).
89.
Zurück zum Zitat G. van der Geer, Siegel modular forms and their applications, in The 1–2–3 of modular forms, ed. by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Universitext (Springer Verlag, Berlin, 2008), pp. 181–245.MATH G. van der Geer, Siegel modular forms and their applications, in The 1–2–3 of modular forms, ed. by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Universitext (Springer Verlag, Berlin, 2008), pp. 181–245.MATH
92.
Zurück zum Zitat I. M. Gel’fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions (Academic Press, 1990). I. M. Gel’fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions (Academic Press, 1990).
97.
Zurück zum Zitat B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry, ed. by A. Scholl, R. Taylor (Cambridge Univ. Press, 1998). B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry, ed. by A. Scholl, R. Taylor (Cambridge Univ. Press, 1998).
101.
Zurück zum Zitat Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Math., vol. 62 (Springer Verlag, 1968). Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Math., vol. 62 (Springer Verlag, 1968).
103.
Zurück zum Zitat J. Humphreys, Linear algebraic groups, Grad. Texts in Math., vol. 21 (Springer Verlag, 1975). J. Humphreys, Linear algebraic groups, Grad. Texts in Math., vol. 21 (Springer Verlag, 1975).
119.
Zurück zum Zitat A. W. Knapp, Representation theory of semisimple groups (Princeton Univ. Press, 1986).CrossRef A. W. Knapp, Representation theory of semisimple groups (Princeton Univ. Press, 1986).CrossRef
123.
Zurück zum Zitat M. Kneser, Strong approximation, algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., vol. 9 (Amer. Math. Soc., Boulder, 1966), pp. 187–196. M. Kneser, Strong approximation, algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., vol. 9 (Amer. Math. Soc., Boulder, 1966), pp. 187–196.
127.
Zurück zum Zitat H. Koch, B. Venkov, Über ganzzahlige unimodulare euklidische Gitter, J. reine angew. Math. 398 (1989), pp. 144–168. H. Koch, B. Venkov, Über ganzzahlige unimodulare euklidische Gitter, J. reine angew. Math. 398 (1989), pp. 144–168.
138.
Zurück zum Zitat R. Langlands, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., vol. 544 (Springer Verlag, 1976). R. Langlands, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., vol. 544 (Springer Verlag, 1976).
162.
Zurück zum Zitat V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., vol 139 (1994). V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., vol 139 (1994).
172.
Zurück zum Zitat W. Rudin, Real and complex analysis, 3rd edn. (McGraw-Hill Int. ed.,1987). W. Rudin, Real and complex analysis, 3rd edn. (McGraw-Hill Int. ed.,1987).
174.
Zurück zum Zitat I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), pp. 5–69.MathSciNetCrossRef I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), pp. 5–69.MathSciNetCrossRef
177.
Zurück zum Zitat J.-P. Serre, Cours d’arithmétique (Publ. Univ. France, Paris, 1970).MATH J.-P. Serre, Cours d’arithmétique (Publ. Univ. France, Paris, 1970).MATH
188.
Zurück zum Zitat G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton Univ. Press, 1971).MATH G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton Univ. Press, 1971).MATH
211.
Zurück zum Zitat A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd edn. (Hermann, 1940). A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd edn. (Hermann, 1940).
Metadaten
Titel
Automorphic Forms and Hecke Operators
verfasst von
Gaëtan Chenevier
Jean Lannes
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95891-0_4

Premium Partner