Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Additional Issues of Importance Related to the Use of Statistical Methods

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most serious concerns is that statistics alone can be misused and misleading due the absence of theory based on first principles and inadequate tools for handling both the problem and the phenomenon and difficult issues of (mis)interpretation, validation, oversimplification and related, especially if the information is not in physical space, e.g. Fourier or any other decomposition. Among the concerns is the issue of statistical (pre)dominance versus dynamical relevance. The statistical predominance does not necessarily corresponds to the dynamical relevance as, e.g. in the case of sweeping decorrelation hypothesis or “exotic” averaging of turbulent flow fields such as represented in the local coordinate system defined by the eigenvectors of the strain rate tensor at each point.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For example, it is clear that if a result can be derived by dimensional analysis alone. . . then it can be derived by almost any theory, right or wrong, which is dimensionally-correct and uses the right variables. Bradshaw (1994).
 
2
It is noteworthy that this spectrum is not precisely the “right” one. Indeed, if one looks at the data by Grant et al. (1962), especially unpublished, but see Long (2003), the error bar is not that small as to exclude the \(k^{-6/3}\) spectrum which correspond just to a single sharp change in velocity, see also Tsinober (2009) p. 334 and references therein for recent results on the “approximately” \(k^{-5/3}\). Moreover, the “small” differences are essential and increase as concerns higher order quantities, derivatives and extreme/strong events.
 
3
In this context it is of interest to quote Goto and Kraichnan (2004): Multifractal models of turbulence have not been derived from the NS equation but they are supported by theoretical arguments and their parameters can be tuned to agree well with a variety of experimental measurements... Multifractal cascade models raise the general issue of distinction between what is descriptive of physical behavior and what can be used for analysis of data... Multifractal models may or may not express well the cascade physics at large but finite Reynolds numbers.
 
4
Frisch (1995) presents this in the form of his hypothesis H1 (p. 74), but omits to mention that it is due to Kolmogorov: there is no presentation of the hypothesis of local isotropy in his book.
It is noteworthy that Kolmogorov theory in reality is based on similarity and dimensionality and has no connection to NSE, see e.g. Monin and Yaglom (1971), p. 21: The great attention paid in this book to, similarity and dimensionality is also conditioned by the fact that Kolmogorov’s theory of locally isotropic turbulence (which is based entirely on these methods) is given a great deal of space here. In other words, experimental validation of Kolmogorov (1941a) theory, as all theories of this kind, has a limited value. Again, it is clear that if a result can be derived by dimensional analysis alone. . . then it can be derived by almost any theory, right or wrong, which is dimensionally-correct and uses the right variables, Bradshaw (1994).
 
5
This seems to be the reason why Batchelor (1953) called this statistical regime as “universal equilibrium” - a somewhat misleading term.Kolmogorov would never use the term “equilibrium” especially as in a variety of “explanations” followed his publications. He would definitely not use the “truncated” Fourier version of the so called Lin equation as did Batchelor (1953) and some later authors for the high wave numbers \( T(k)=2\nu k^{2}E(k)\) - ‘equilibrium range’, Eq. 6.6.5, p. 126. A “small” \(\partial E/\partial t\) can (and mosly will) make an essential difference turning the ‘parabolic’ equation into an ‘elliptical’ one. In employing statistics a “small” difference between approximately and exactly stationary is not necessarily synonymous to ‘unimportant’ especially in the context of statistical predominance versus dynamical significance. Kolmogorov would also never use the Fourier transform either.
 
6
One cannot be sure even whether one can always consider the statistically stationary turbulent flows as “equilibrium” except those with large scale time independent excitation.
 
7
In the language of mathematicians invariant probability measures, and there is an unsolved question/problem which one is selected in experiments. Ruelle (1983).
 
8
The problem with this ergodicityassumption is that nobody has ever even come close to proving it for the Navier–Stokes equation , Foiaş (1997) though some mathematical results, which are claimed to be relevant to turbulence are given in Foiaş et al. (2001). Nameley, they have shown that there are measures – in the language of physicists ensembles – on a function space that are time-invariant. However, invariance under time evolution is not enough to specify a unique measure which would describe turbulence. Another problem is that it is not clear how the objects that the authors have constructed and used in their proofs are relevant/related or even have anything to do with turbulence.
 
9
Turbulent flows possess (empirically) stable statistical properties (SSP), not just averages but almost all statistical properties. In case if statistically stationary flows the existence of SSP seems to be an indication of the existence of what mathematicians call attractors. But matters are more complicated as many statistical properties of time-dependent in the statistical sense turbulent flows (possessing no attractor, but stable SSP) are quite similar at least qualitatively to those of statistically stationary ones as long as the Reynolds number of the former is not too small at any particular time moment of interest. This can be qualified as some manifestation of qualitative temporal universality/memory.
 
Literatur
Zurück zum Zitat Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, CambridgeMATH Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Berdichevsky V, Fridlyand A, Sutyrin V (1996) Prediction of turbulent velocity profile in Couette and Poiseuille flows from first principles. Phys Rev Lett 76:3967–3970CrossRef Berdichevsky V, Fridlyand A, Sutyrin V (1996) Prediction of turbulent velocity profile in Couette and Poiseuille flows from first principles. Phys Rev Lett 76:3967–3970CrossRef
Zurück zum Zitat Borodulin VI, Kachanov YS, Roschektayev AP (2011) Experimental detection of deterministic turbulence. J Turbul 12(23):1–34MathSciNet Borodulin VI, Kachanov YS, Roschektayev AP (2011) Experimental detection of deterministic turbulence. J Turbul 12(23):1–34MathSciNet
Zurück zum Zitat Boumans M, Hon G, Petersen A (2013) Error and uncertainty in scientific practice. Pickering & Chatto, London Boumans M, Hon G, Petersen A (2013) Error and uncertainty in scientific practice. Pickering & Chatto, London
Zurück zum Zitat Bradshaw P (1994) Turbulence: the chief outstanding difficulty of our subject. Exp Fluids 16:203–216CrossRef Bradshaw P (1994) Turbulence: the chief outstanding difficulty of our subject. Exp Fluids 16:203–216CrossRef
Zurück zum Zitat Cullen MJP (2006) A mathematical theory of large-scale atmospheric flow. Imperial College Press, LondonCrossRef Cullen MJP (2006) A mathematical theory of large-scale atmospheric flow. Imperial College Press, LondonCrossRef
Zurück zum Zitat Djenidi L, Antonia RA, Danaila L (2017a) Self-preservation relation to the Kolmogorov similarity hypotheses. Phys Rev Fluids 05460 Djenidi L, Antonia RA, Danaila L (2017a) Self-preservation relation to the Kolmogorov similarity hypotheses. Phys Rev Fluids 05460
Zurück zum Zitat Djenidi L, Lefeuvre N, Kamruzzaman M, Antonia RA (2017b) On the normalized dissipation parameter C\(_{\epsilon }\) in decaying turbulence. J Fluid Mech 817:61–79MathSciNetMATH Djenidi L, Lefeuvre N, Kamruzzaman M, Antonia RA (2017b) On the normalized dissipation parameter C\(_{\epsilon }\) in decaying turbulence. J Fluid Mech 817:61–79MathSciNetMATH
Zurück zum Zitat Doering CR, Gibbon JD (2004) Applied analysis of the Navier–Stokes equations. Cambridge University Press, CambridgeMATH Doering CR, Gibbon JD (2004) Applied analysis of the Navier–Stokes equations. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Eyink GL, Frisch U (2011) Robert H. Kraichnan. In: Davidson PA, Kaneda Y, Moffatt K, Sreenivasan K (eds) A voyage through turbulence. Cambridge University Press, Cambridge, pp 329–372 Eyink GL, Frisch U (2011) Robert H. Kraichnan. In: Davidson PA, Kaneda Y, Moffatt K, Sreenivasan K (eds) A voyage through turbulence. Cambridge University Press, Cambridge, pp 329–372
Zurück zum Zitat Frisch, U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge Frisch, U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge
Zurück zum Zitat Foiaş C, Manley O, Rosa R, Temam R (2001) Navier–Stokes equations and turbulence. Cambridge University Press, CambridgeMATHCrossRef Foiaş C, Manley O, Rosa R, Temam R (2001) Navier–Stokes equations and turbulence. Cambridge University Press, CambridgeMATHCrossRef
Zurück zum Zitat Gad-el-Hak M, Tsai HM (2006) Transition and turbulence control. World Scientific, SingaporeMATH Gad-el-Hak M, Tsai HM (2006) Transition and turbulence control. World Scientific, SingaporeMATH
Zurück zum Zitat George WK (2012) Asymptotic effect of initial and upstream conditions on turbulence. J Fluids Eng 134:061203CrossRef George WK (2012) Asymptotic effect of initial and upstream conditions on turbulence. J Fluids Eng 134:061203CrossRef
Zurück zum Zitat George WK (2014) Reconsidering the ‘Local Equilibrium’ hypothesis for small scale turbulence. Turbulence Colloquium Marseille 2011: Fundamental Problems of Turbulence, 50 Years After the Marseille 1961 Conference. eds. Farge M, Moffatt HK, Schneider K. Les Ulis, Fr.: EDP Sci. pp 457– 477 George WK (2014) Reconsidering the ‘Local Equilibrium’ hypothesis for small scale turbulence. Turbulence Colloquium Marseille 2011: Fundamental Problems of Turbulence, 50 Years After the Marseille 1961 Conference. eds. Farge M, Moffatt HK, Schneider K. Les Ulis, Fr.: EDP Sci. pp 457– 477
Zurück zum Zitat Gkioulekas E (2007) On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Physica D 226:151–172MathSciNetMATHCrossRef Gkioulekas E (2007) On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Physica D 226:151–172MathSciNetMATHCrossRef
Zurück zum Zitat Goto S, Vassilicos V (2016) Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn Res 48(021402):1–17MathSciNet Goto S, Vassilicos V (2016) Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn Res 48(021402):1–17MathSciNet
Zurück zum Zitat Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. Fluid Mech 12(2):41–268MATHCrossRef Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. Fluid Mech 12(2):41–268MATHCrossRef
Zurück zum Zitat Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007a) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Facilities, methods and some general results. J Fluid Mech 589:57–81MATH Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007a) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Facilities, methods and some general results. J Fluid Mech 589:57–81MATH
Zurück zum Zitat Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007b) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J Fluid Mech 589:83–102MATH Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007b) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J Fluid Mech 589:83–102MATH
Zurück zum Zitat Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007c) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J Fluid Mech 589:103–123MATH Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007c) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J Fluid Mech 589:103–123MATH
Zurück zum Zitat Iyer KP, Sreenivasan KR, Yeung PK (2017) Reynolds number scaling of velocity increments in isotropic turbulence. Phys Rev E95:021101(R)/1-6 Iyer KP, Sreenivasan KR, Yeung PK (2017) Reynolds number scaling of velocity increments in isotropic turbulence. Phys Rev E95:021101(R)/1-6
Zurück zum Zitat Klewicki JC, Philip J, Marusic I, Chauhan K, Morrill-Winte C (2014) Self-similarity in the inertial region of wall turbulence. Phys Rev E 90:063015/1-14 Klewicki JC, Philip J, Marusic I, Chauhan K, Morrill-Winte C (2014) Self-similarity in the inertial region of wall turbulence. Phys Rev E 90:063015/1-14
Zurück zum Zitat Kolmogorov AN (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I. Kluwer, pp 318–321 Kolmogorov AN (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I. Kluwer, pp 318–321
Zurück zum Zitat Kolmogorov AN (1941b) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I. Kluwer, pp 324–327 Kolmogorov AN (1941b) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I. Kluwer, pp 324–327
Zurück zum Zitat Liepmann HW (1979) The rise and fall of ideas in turbulence. Am Sci 67:221–228MathSciNet Liepmann HW (1979) The rise and fall of ideas in turbulence. Am Sci 67:221–228MathSciNet
Zurück zum Zitat Long RR (2003) Do tidal-channel turbulence measurements support k\(^{-5/3}\)? Environ Fluid Mech 3:109–127 Long RR (2003) Do tidal-channel turbulence measurements support k\(^{-5/3}\)? Environ Fluid Mech 3:109–127
Zurück zum Zitat McFarlane N (2011) Parameterizations: representing key processes in climate models without resolving them. Wiley Interdiscip Rev-Clim Change 2(4):482–497CrossRef McFarlane N (2011) Parameterizations: representing key processes in climate models without resolving them. Wiley Interdiscip Rev-Clim Change 2(4):482–497CrossRef
Zurück zum Zitat Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1. MIT Press, Cambridge Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1. MIT Press, Cambridge
Zurück zum Zitat Novikov EA (1990) The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys Fluids A 2:814–820MathSciNetCrossRef Novikov EA (1990) The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys Fluids A 2:814–820MathSciNetCrossRef
Zurück zum Zitat Palmer TN, Hardaker PJ (2011) Introduction: handling uncertainty in science. Philos Trans R Soc Lond A 369:4681–4684CrossRef Palmer TN, Hardaker PJ (2011) Introduction: handling uncertainty in science. Philos Trans R Soc Lond A 369:4681–4684CrossRef
Zurück zum Zitat Pumir A, Xu, Bodenschatz E, Grauer R (2016) Single-particle motion and vortex stretching in three-dimensional turbulent flows. Phys Rev Lett 116(12):124502/1-5 Pumir A, Xu, Bodenschatz E, Grauer R (2016) Single-particle motion and vortex stretching in three-dimensional turbulent flows. Phys Rev Lett 116(12):124502/1-5
Zurück zum Zitat Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, CambridgeMATH Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, CambridgeCrossRef Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Rosteck AM, Oberlack M (2011) Lie algebra of the symmetries of the multi-point equations in statistical turbulence theory. J Nonlinear Math Phys 18(1):251–264MathSciNetMATHCrossRef Rosteck AM, Oberlack M (2011) Lie algebra of the symmetries of the multi-point equations in statistical turbulence theory. J Nonlinear Math Phys 18(1):251–264MathSciNetMATHCrossRef
Zurück zum Zitat Ruelle D (1983) Differential dynamical systems and the problem of turbulence. Proc Symp Pure Math 39:141–154CrossRef Ruelle D (1983) Differential dynamical systems and the problem of turbulence. Proc Symp Pure Math 39:141–154CrossRef
Zurück zum Zitat Saffman PG (1978) Problems and progress in the theory of turbulence. In: Fiedler H (ed) Structure and mechanics of turbulence, II. Lecture notes in physics, vol 76. Springer, Berlin, pp 274–306 Saffman PG (1978) Problems and progress in the theory of turbulence. In: Fiedler H (ed) Structure and mechanics of turbulence, II. Lecture notes in physics, vol 76. Springer, Berlin, pp 274–306
Zurück zum Zitat She Z, Chen X, Hussain F (2017) Quantifying wall turbulence via a symmetry approach: a Lie group theory. J Fluid Mech 827:322–356MathSciNetCrossRef She Z, Chen X, Hussain F (2017) Quantifying wall turbulence via a symmetry approach: a Lie group theory. J Fluid Mech 827:322–356MathSciNetCrossRef
Zurück zum Zitat Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Clarendon Press, OxfordMATH Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Clarendon Press, OxfordMATH
Zurück zum Zitat Tsinober A (2009) An informal conceptual introduction to turbulence. Springer, Berlin Tsinober A (2009) An informal conceptual introduction to turbulence. Springer, Berlin
Zurück zum Zitat Tsinober A (2016) Uncertainty in Turbulence. In: Peinke J et al (eds), Progress in turbulence VI. Springer, pp 3–7 Tsinober A (2016) Uncertainty in Turbulence. In: Peinke J et al (eds), Progress in turbulence VI. Springer, pp 3–7
Zurück zum Zitat Tsinober A, Galanti B (2003) Exploratory numerical experiments on the differences between genuine and ‘passive’ turbulence. Phys Fluids 15:3514–3531MathSciNetMATHCrossRef Tsinober A, Galanti B (2003) Exploratory numerical experiments on the differences between genuine and ‘passive’ turbulence. Phys Fluids 15:3514–3531MathSciNetMATHCrossRef
Zurück zum Zitat Vedula P, Moser RD, Zandonade PS (2005) Validity of quasinormal approximation in turbulent channel flow. Phys Fluids 17: 055106/1-9MATHCrossRef Vedula P, Moser RD, Zandonade PS (2005) Validity of quasinormal approximation in turbulent channel flow. Phys Fluids 17: 055106/1-9MATHCrossRef
Zurück zum Zitat von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond Ser A, Math Phys Sci 164:192–215MATHCrossRef von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond Ser A, Math Phys Sci 164:192–215MATHCrossRef
Metadaten
Titel
Additional Issues of Importance Related to the Use of Statistical Methods
verfasst von
Arkady Tsinober
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-99531-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.