Skip to main content

2010 | OriginalPaper | Buchkapitel

Hydrogels for Actuators

verfasst von : Andreas Richter

Erschienen in: Hydrogel Sensors and Actuators

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In microsystem technology research a material with such a diversity and significance like silicon in microelectronics has not been established for the last 20 years. Recently in microfluidics and in special imaging systems hydrogels get ready to take this place. Here we present a review on hydrogel based microsystems with actuator or sensor-actuator functionalities. Automatic microfluidic systems based on the sensor-actuator properties of hydrogels offer functionalities which have not been yet realised with other systems or actuators. The functional principles of the basic elements are described on the example of hydrodynamic transistors, pumps and tunable microlenses. In the field of microelectromechanical microfluidic systems hydrogels provide a unique multi-functionality. We describe the basic principles applied on an electronic control for hydrogel actuators and also on the basic components for microfluidics: microvalve, micropump and hydrodynamic transistors. Furthermore, the first hydrogel-based highly integrated microsystem, a high-resolution tactile display containing 4,225 individually controllable actuator pixels, is reviewed. In the last two Sections we discuss essential physical phenomena und design rules, which have to be considered to avoid malfunctions of the designed devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this chapter the sensor-actuator functionality is sometimes described as actuator according to terms used in the literature. Please note that a sensor-actuator transforms non-mechanical energy into mechanical energy, whereas an actuator is typically controlled by electrics or electronics.
 
Literatur
Zurück zum Zitat Arndt KF, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler HJ (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work and transition point. Acta Polym 50:383–390CrossRef Arndt KF, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler HJ (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work and transition point. Acta Polym 50:383–390CrossRef
Zurück zum Zitat Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505CrossRef Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505CrossRef
Zurück zum Zitat Arndt KF, Schmidt T, Reichelt R (2001) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy irradiation. Polymer 42:6785–6791CrossRef Arndt KF, Schmidt T, Reichelt R (2001) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy irradiation. Polymer 42:6785–6791CrossRef
Zurück zum Zitat Baldi A, Gu Y, Loftness PE, Siegel RA, Ziaie B (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621CrossRef Baldi A, Gu Y, Loftness PE, Siegel RA, Ziaie B (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621CrossRef
Zurück zum Zitat Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef
Zurück zum Zitat Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8:1198–1204CrossRef Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8:1198–1204CrossRef
Zurück zum Zitat Dittrich PS, Manz A (2006) Lab on a chip: microfluidics in drug discovery. Nature Rev Drug Disc 5:210–218CrossRef Dittrich PS, Manz A (2006) Lab on a chip: microfluidics in drug discovery. Nature Rev Drug Disc 5:210–218CrossRef
Zurück zum Zitat Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907 Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907
Zurück zum Zitat Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554CrossRef Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554CrossRef
Zurück zum Zitat Dong L, Agarwal AK, Beebe DJ, Jiang H (2007) Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels. Adv Mater 19:401–405CrossRef Dong L, Agarwal AK, Beebe DJ, Jiang H (2007) Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels. Adv Mater 19:401–405CrossRef
Zurück zum Zitat Eddington DT, Beebe DJ (2004) A valved responsive hydrogel microdispensing device with integrated pressure source. J Microelectromech Syst 13:586–593CrossRef Eddington DT, Beebe DJ (2004) A valved responsive hydrogel microdispensing device with integrated pressure source. J Microelectromech Syst 13:586–593CrossRef
Zurück zum Zitat Ehrick JD, Stokes S, Bachas-Daunert S, Moschou EA, Deo SK, Bachas LG, Daunert S (2007) Chemically tunable lensing of stimuli-responsive hydrogel microdomes. Adv Mater 19:4024–4027CrossRef Ehrick JD, Stokes S, Bachas-Daunert S, Moschou EA, Deo SK, Bachas LG, Daunert S (2007) Chemically tunable lensing of stimuli-responsive hydrogel microdomes. Adv Mater 19:4024–4027CrossRef
Zurück zum Zitat Gast FU, Dittrich PS, Schwille P, Weigel M, Mertig M, Opitz J, Queitsch U, Diez S, Lincoln B, Wottawah F, Schinkinger S, Guck J, Käs J, Smolinski J, Salchert K, Werner C, Duschl C, Jäger MS, Uhlig K, Geggier P, Howitz S (2006) The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid Nanofluid 2:21–36CrossRef Gast FU, Dittrich PS, Schwille P, Weigel M, Mertig M, Opitz J, Queitsch U, Diez S, Lincoln B, Wottawah F, Schinkinger S, Guck J, Käs J, Smolinski J, Salchert K, Werner C, Duschl C, Jäger MS, Uhlig K, Geggier P, Howitz S (2006) The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid Nanofluid 2:21–36CrossRef
Zurück zum Zitat Gerlach G, Günther M, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuat B 111–112:555–561CrossRef Gerlach G, Günther M, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuat B 111–112:555–561CrossRef
Zurück zum Zitat Good BT, Bowman CN, Davis RH (2007) A water-activated pump for portable microfluidic applications. J Colloid Interface Sci 305:239–249CrossRef Good BT, Bowman CN, Davis RH (2007) A water-activated pump for portable microfluidic applications. J Colloid Interface Sci 305:239–249CrossRef
Zurück zum Zitat Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110CrossRef Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110CrossRef
Zurück zum Zitat Harmon ME, Tang M, Frank CW (2003) A microfluidic actuator based on thermoresponsive hydrogels. Polymer 44:4547–4556CrossRef Harmon ME, Tang M, Frank CW (2003) A microfluidic actuator based on thermoresponsive hydrogels. Polymer 44:4547–4556CrossRef
Zurück zum Zitat http://www.fluidigm.com/products/biomark-chips.html, date: 25.06.2008 http://www.fluidigm.com/products/biomark-chips.html, date: 25.06.2008
Zurück zum Zitat Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380CrossRef Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380CrossRef
Zurück zum Zitat Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695CrossRef Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695CrossRef
Zurück zum Zitat Kim D, Beebe DJ (2007) A bi-polymer micro one-way valve. Sens Actuat A 136:426–433CrossRef Kim D, Beebe DJ (2007) A bi-polymer micro one-way valve. Sens Actuat A 136:426–433CrossRef
Zurück zum Zitat Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513CrossRef Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513CrossRef
Zurück zum Zitat Kim J, Nayak S, Lyon LA (2005a) Bioresponsive hydrogel microlenses. J Am Chem Soc 127:9588–9592CrossRef Kim J, Nayak S, Lyon LA (2005a) Bioresponsive hydrogel microlenses. J Am Chem Soc 127:9588–9592CrossRef
Zurück zum Zitat Kim J, Serpe MJ, Lyon LA (2005b) Photoswitchable microlens arrays. Angew Chem Int Ed 44:1333–1336CrossRef Kim J, Serpe MJ, Lyon LA (2005b) Photoswitchable microlens arrays. Angew Chem Int Ed 44:1333–1336CrossRef
Zurück zum Zitat Kuckling D, Arndt KF, Richter A (2003) Temperature and pH dependent swelling behavior of poly(N-isopropylacrylamide)-copolymer hydrogels and their use in flow control. Macromol Mater Eng 288:144–151CrossRef Kuckling D, Arndt KF, Richter A (2003) Temperature and pH dependent swelling behavior of poly(N-isopropylacrylamide)-copolymer hydrogels and their use in flow control. Macromol Mater Eng 288:144–151CrossRef
Zurück zum Zitat Kuhn W, Hargitay B (1951) Muskelähnliche Arbeitsleistung künstlicher hochpolymerer Stoffe. Z f Elektrochemie 55:490–502 Kuhn W, Hargitay B (1951) Muskelähnliche Arbeitsleistung künstlicher hochpolymerer Stoffe. Z f Elektrochemie 55:490–502
Zurück zum Zitat Kuhn W, Künzle O, Katchalsky A (1948) Denouement de molecules en chaines polyvalentes par des charges electriques en solution. Bull Soc Chim Belg 57:421–431CrossRef Kuhn W, Künzle O, Katchalsky A (1948) Denouement de molecules en chaines polyvalentes par des charges electriques en solution. Bull Soc Chim Belg 57:421–431CrossRef
Zurück zum Zitat Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 2 Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 2
Zurück zum Zitat Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef
Zurück zum Zitat Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41CrossRef Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41CrossRef
Zurück zum Zitat Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Syst 11:45–53CrossRef Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Syst 11:45–53CrossRef
Zurück zum Zitat Liu C, Park JY, Xu Y, Lee SH (2007) Arrayed pH-responsive microvalves controlled by multiphase laminar flow. J Micromech Microeng 17:1985–1991CrossRef Liu C, Park JY, Xu Y, Lee SH (2007) Arrayed pH-responsive microvalves controlled by multiphase laminar flow. J Micromech Microeng 17:1985–1991CrossRef
Zurück zum Zitat Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003a) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702CrossRef Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003a) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702CrossRef
Zurück zum Zitat Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003b) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702CrossRef Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003b) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702CrossRef
Zurück zum Zitat Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368CrossRef Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368CrossRef
Zurück zum Zitat Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312CrossRef Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312CrossRef
Zurück zum Zitat Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRef Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRef
Zurück zum Zitat Nguyen NT, Huang X, Chuan TK (2002) MEMS-micropumps: a review. Transact ASME 124:384–392 Nguyen NT, Huang X, Chuan TK (2002) MEMS-micropumps: a review. Transact ASME 124:384–392
Zurück zum Zitat Osada Y, Gong JP (1998a) Soft and wet materials: Polymer gels. Adv Mater 10:827–837CrossRef Osada Y, Gong JP (1998a) Soft and wet materials: Polymer gels. Adv Mater 10:827–837CrossRef
Zurück zum Zitat Osada Y, Gong JP (1998b) Soft and wet materials: Polymer gels. Adv. Mater. 10:827–837CrossRef Osada Y, Gong JP (1998b) Soft and wet materials: Polymer gels. Adv. Mater. 10:827–837CrossRef
Zurück zum Zitat Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores - Function of chemical valve-. J Polym Sci, Polym Lett Ed 19:303–308CrossRef Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores - Function of chemical valve-. J Polym Sci, Polym Lett Ed 19:303–308CrossRef
Zurück zum Zitat Park JY, Oh HJ, Kim DJ, Baek JY, Lee SH (2006) A polymeric microfluidic valve employing a pH-responsive hydrogel microsphere as an actuating source. J Micromech Microeng 16:656–663CrossRef Park JY, Oh HJ, Kim DJ, Baek JY, Lee SH (2006) A polymeric microfluidic valve employing a pH-responsive hydrogel microsphere as an actuating source. J Micromech Microeng 16:656–663CrossRef
Zurück zum Zitat Peters EC, Svec F, Frechét JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633CrossRef Peters EC, Svec F, Frechét JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633CrossRef
Zurück zum Zitat Richter A (2006) Hydrogel-based µTAS. In C.T. Leondes: MEMS/NEMS Handbook: Techniques and Applications. Vol. 2: Fabrication Techniques, Chapter 5, Springer, New York Richter A (2006) Hydrogel-based µTAS. In C.T. Leondes: MEMS/NEMS Handbook: Techniques and Applications. Vol. 2: Fabrication Techniques, Chapter 5, Springer, New York
Zurück zum Zitat Richter A, Paschew G (2009) Optoelectrothermic control of polymer-based highly integrated MEMS applied in an artificial skin. Adv Mater 21:979–983CrossRef Richter A, Paschew G (2009) Optoelectrothermic control of polymer-based highly integrated MEMS applied in an artificial skin. Adv Mater 21:979–983CrossRef
Zurück zum Zitat Richter A, Arndt KF, Krause W, Kuckling D, Howitz S (2001) Devices for flow control based on smart hydrogels. 7th Pacific polymer Conference, Oaxaca, Dec 3–7, 2001, p. 312 Richter A, Arndt KF, Krause W, Kuckling D, Howitz S (2001) Devices for flow control based on smart hydrogels. 7th Pacific polymer Conference, Oaxaca, Dec 3–7, 2001, p. 312
Zurück zum Zitat Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRef Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRef
Zurück zum Zitat Richter A, Klenke C, Arndt KF (2004a) Adjustable low dynamic pumps based on hydrogels. Macromol Symp 210:377–384CrossRef Richter A, Klenke C, Arndt KF (2004a) Adjustable low dynamic pumps based on hydrogels. Macromol Symp 210:377–384CrossRef
Zurück zum Zitat Richter A, Howitz S, Kuckling D, Arndt KF (2004b) Influence of volume phase transition phenomena on the behaviour of hydrogel-based valves. Sens Actuat B 99:451–458CrossRef Richter A, Howitz S, Kuckling D, Arndt KF (2004b) Influence of volume phase transition phenomena on the behaviour of hydrogel-based valves. Sens Actuat B 99:451–458CrossRef
Zurück zum Zitat Richter A, Krause W, Lienig J, Arndt KF (2005) Polymer networks as actuator and sensor systems to be used for automation of biomedical devices. Biomed Technik 50:66–68CrossRef Richter A, Krause W, Lienig J, Arndt KF (2005) Polymer networks as actuator and sensor systems to be used for automation of biomedical devices. Biomed Technik 50:66–68CrossRef
Zurück zum Zitat Richter A, Türke A, Pich A (2007a) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112CrossRef Richter A, Türke A, Pich A (2007a) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112CrossRef
Zurück zum Zitat Richter A, Wenzel J, Kretschmer K (2007b) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuat B 125:569–573CrossRef Richter A, Wenzel J, Kretschmer K (2007b) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuat B 125:569–573CrossRef
Zurück zum Zitat Richter A, Klatt S, Paschew G, Klenke C (2009a) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618CrossRef Richter A, Klatt S, Paschew G, Klenke C (2009a) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618CrossRef
Zurück zum Zitat Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJ (2008b) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581CrossRef Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJ (2008b) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581CrossRef
Zurück zum Zitat Sershen SR, Mensing GA, Ng M, Halas NJ, Beebe DJ, West JL (2005) Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater 17:1366–1368CrossRef Sershen SR, Mensing GA, Ng M, Halas NJ, Beebe DJ, West JL (2005) Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater 17:1366–1368CrossRef
Zurück zum Zitat Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRef Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRef
Zurück zum Zitat Sugiura S, Sumaru K, Ohi K, Hiroki K, Takagi T, Kanamori T (2007) Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens Actuat A 140:176–184CrossRef Sugiura S, Sumaru K, Ohi K, Hiroki K, Takagi T, Kanamori T (2007) Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens Actuat A 140:176–184CrossRef
Zurück zum Zitat Suzuki M (1991) Amphoteric poly(vinyl alcohol) hydrogel and electrodynamic control method for artificial muscles. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 221-236 Suzuki M (1991) Amphoteric poly(vinyl alcohol) hydrogel and electrodynamic control method for artificial muscles. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 221-236
Zurück zum Zitat Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710CrossRef Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710CrossRef
Zurück zum Zitat Suzuki A, Tanaka T (1990) Phase-transition in polymer gels induced by visible-light. Nature 346:345–347CrossRef Suzuki A, Tanaka T (1990) Phase-transition in polymer gels induced by visible-light. Nature 346:345–347CrossRef
Zurück zum Zitat Suzuki H, Tokuda T, Kobajashi K (2002) A disposable “intelligent mosquito” with a reversible sampling mechanism using the volume-phase transition of a gel. Sens Actuat B 83:53–59CrossRef Suzuki H, Tokuda T, Kobajashi K (2002) A disposable “intelligent mosquito” with a reversible sampling mechanism using the volume-phase transition of a gel. Sens Actuat B 83:53–59CrossRef
Zurück zum Zitat Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40:820–823CrossRef Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40:820–823CrossRef
Zurück zum Zitat Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRef Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRef
Zurück zum Zitat Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef
Zurück zum Zitat Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals Biomed Eng 4:343–353CrossRef Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals Biomed Eng 4:343–353CrossRef
Zurück zum Zitat Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRef Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRef
Zurück zum Zitat Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef
Zurück zum Zitat Wang J, Chen Z, Mauk M, Hong KS, Li M, Yang S, Bau1 HH (2005) Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed Microdev 7: 313–322CrossRef Wang J, Chen Z, Mauk M, Hong KS, Li M, Yang S, Bau1 HH (2005) Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed Microdev 7: 313–322CrossRef
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
Zurück zum Zitat Wünschmann W, Richter A, Dierigen HJ, Howitz, S, Kuckling D, Keller, M, Arndt KF, Taktile Anzeigeeinheit. German Patent Application DE 102 26 746.4, filing date 14/06/2002 Wünschmann W, Richter A, Dierigen HJ, Howitz, S, Kuckling D, Keller, M, Arndt KF, Taktile Anzeigeeinheit. German Patent Application DE 102 26 746.4, filing date 14/06/2002
Zurück zum Zitat Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003a) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961CrossRef Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003a) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961CrossRef
Zurück zum Zitat Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003b) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961CrossRef Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003b) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961CrossRef
Zurück zum Zitat Zhang Y, Kato S, Anazawa T (2008) A microchannel concentrator controlled by integral thermoresponsive valves. Sens Actuat B 129:481–486CrossRef Zhang Y, Kato S, Anazawa T (2008) A microchannel concentrator controlled by integral thermoresponsive valves. Sens Actuat B 129:481–486CrossRef
Metadaten
Titel
Hydrogels for Actuators
verfasst von
Andreas Richter
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-75645-3_7