Skip to main content

2012 | OriginalPaper | Buchkapitel

10. SERS Hot Spots

verfasst von : Robert C. Maher

Erschienen in: Raman Spectroscopy for Nanomaterials Characterization

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot spots are highly localized regions of intense local field enhancement believed to be caused by local surface plasmon resonances (LSPR). Formed within the interstitial crevices present in metallic nanostructures [1–4], such hot spots have been claimed to provide extraordinary enhancements of up to 1015 orders of magnitude to the surface-enhanced Raman scattering (SERS) signal (proportional to |E| 4 ) [5] in areas of subwavelength localization [6, 7]. As a result, hot spots are critically important for SERS and, if in sufficient density, can dominate the properties of any SERS active substrate within which they reside. Given their characteristics, hot spots are now widely acknowledged to be a prerequisite for the observation of single-molecule SERS and set the limit for the achievable spatial resolution for SERS as applied to scanning probe microscopy with high chemical specificity also known as tip-enhanced Raman spectroscopy (TERS). As a result of their importance to SERS, hot spots have generated a great deal of interest in the last 5 years. This review summarizes the key results from recent theoretical and experimental investigations focused on improving the understanding of the characteristics of SERS hot spots and their control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6 G molecules. J Phys Chem B 104(50):11965–11971CrossRef Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6 G molecules. J Phys Chem B 104(50):11965–11971CrossRef
2.
Zurück zum Zitat Xu HX, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324CrossRef Xu HX, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324CrossRef
3.
Zurück zum Zitat Futamata M (2006) Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss 132:45–61CrossRef Futamata M (2006) Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss 132:45–61CrossRef
4.
Zurück zum Zitat Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107(37):9964–9972CrossRef Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107(37):9964–9972CrossRef
5.
Zurück zum Zitat Anderson DJ, Moskovits M (2006) A SERS-active system based on silver nanoparticles tethered to a deposited silver film. J Phys Chem B 110(28):13722–13727CrossRef Anderson DJ, Moskovits M (2006) A SERS-active system based on silver nanoparticles tethered to a deposited silver film. J Phys Chem B 110(28):13722–13727CrossRef
6.
Zurück zum Zitat Le Ru EC, Etchegoin PG (2004) Sub-wavelength localization of hot-spots in SERS. Chem Phys Lett 396(4–6):393–397 Le Ru EC, Etchegoin PG (2004) Sub-wavelength localization of hot-spots in SERS. Chem Phys Lett 396(4–6):393–397
7.
Zurück zum Zitat Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys-Condens Mat 14(18):R597–R624CrossRef Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys-Condens Mat 14(18):R597–R624CrossRef
8.
Zurück zum Zitat Fleischm M, Hendra PJ, Mcquilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRef Fleischm M, Hendra PJ, Mcquilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRef
9.
Zurück zum Zitat Jeanmaire DL, Vanduyne RP (1977) Surface Raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20CrossRef Jeanmaire DL, Vanduyne RP (1977) Surface Raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20CrossRef
10.
Zurück zum Zitat Moskovits M (1978) Surface-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161CrossRef Moskovits M (1978) Surface-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161CrossRef
11.
Zurück zum Zitat Albrecht MG, Creighton JA (1977) Anomalously intense Raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217CrossRef Albrecht MG, Creighton JA (1977) Anomalously intense Raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217CrossRef
12.
Zurück zum Zitat Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826CrossRef Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826CrossRef
13.
Zurück zum Zitat Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, HobokenCrossRef Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, HobokenCrossRef
14.
Zurück zum Zitat Le Ru EC, Etchegoin P (2009) Principles of surface-enhanced Raman spectroscopy, 1st edn. Elsevier, Amsterdam Le Ru EC, Etchegoin P (2009) Principles of surface-enhanced Raman spectroscopy, 1st edn. Elsevier, Amsterdam
15.
Zurück zum Zitat Le Ru EC, Etchegoin PG (2006) Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy. Chem Phys Lett 423(1–3):63–66 Le Ru EC, Etchegoin PG (2006) Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy. Chem Phys Lett 423(1–3):63–66
16.
Zurück zum Zitat Moerl L, Pettinger B (1982) The role of Cu atoms on silver electrodes in surface enhanced Raman-scattering from pyridine – giant enhancement by a minority of adsorbed molecules. Solid State Commun 43(5):315–320CrossRef Moerl L, Pettinger B (1982) The role of Cu atoms on silver electrodes in surface enhanced Raman-scattering from pyridine – giant enhancement by a minority of adsorbed molecules. Solid State Commun 43(5):315–320CrossRef
17.
Zurück zum Zitat Watanabe T, Yanagihara N, Honda K, Pettinger B, Moerl L (1983) Effects of underpotentially deposited Tl and Pb submonolayers on the surface-enhanced Raman-scattering (SERS) from pyridine at Ag electrodes. Chem Phys Lett 96(6):649–655CrossRef Watanabe T, Yanagihara N, Honda K, Pettinger B, Moerl L (1983) Effects of underpotentially deposited Tl and Pb submonolayers on the surface-enhanced Raman-scattering (SERS) from pyridine at Ag electrodes. Chem Phys Lett 96(6):649–655CrossRef
18.
Zurück zum Zitat Furtak TE, Roy D (1983) Nature of the active-site in surface-enhanced Raman-scattering. Phys Rev Lett 50(17):1301–1304CrossRef Furtak TE, Roy D (1983) Nature of the active-site in surface-enhanced Raman-scattering. Phys Rev Lett 50(17):1301–1304CrossRef
19.
Zurück zum Zitat Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10(40):6079–6089CrossRef Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10(40):6079–6089CrossRef
20.
Zurück zum Zitat Zhang WH, Cui XD, Martin OJF (2009) Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J Raman Spectrosc 40(10):1338–1342CrossRef Zhang WH, Cui XD, Martin OJF (2009) Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J Raman Spectrosc 40(10):1338–1342CrossRef
21.
Zurück zum Zitat Zhao LL, Jensen L, Schatz GC (2006) Surface-enhanced Raman scattering of pyrazine at the junction between two Ag-20 nanoclusters. Nano Lett 6(6):1229–1234CrossRef Zhao LL, Jensen L, Schatz GC (2006) Surface-enhanced Raman scattering of pyrazine at the junction between two Ag-20 nanoclusters. Nano Lett 6(6):1229–1234CrossRef
22.
Zurück zum Zitat Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRef Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRef
23.
Zurück zum Zitat Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRef Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRef
24.
Zurück zum Zitat Otto A (2006) On the significance of Shalaev’s “hot spots” in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold. J Raman Spectrosc 37(9):937–947CrossRef Otto A (2006) On the significance of Shalaev’s “hot spots” in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold. J Raman Spectrosc 37(9):937–947CrossRef
25.
Zurück zum Zitat Zhang P, Haslett TL, Douketis C, Moskovits M (1998) Mode localization in self-affine fractal interfaces observed by near-field microscopy. Phys Rev B 57(24):15513–15518CrossRef Zhang P, Haslett TL, Douketis C, Moskovits M (1998) Mode localization in self-affine fractal interfaces observed by near-field microscopy. Phys Rev B 57(24):15513–15518CrossRef
26.
Zurück zum Zitat Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699CrossRef Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699CrossRef
27.
Zurück zum Zitat Aslan K, Geddes CD (2009) Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chem Soc Rev 38(9):2556–2564CrossRef Aslan K, Geddes CD (2009) Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chem Soc Rev 38(9):2556–2564CrossRef
28.
Zurück zum Zitat Osawa M (2001) Surface-enhanced infrared absorption. Near-Field Opt Surf Plasmon Polaritons 81:163–187CrossRef Osawa M (2001) Surface-enhanced infrared absorption. Near-Field Opt Surf Plasmon Polaritons 81:163–187CrossRef
29.
Zurück zum Zitat Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37(5):898–911CrossRef Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37(5):898–911CrossRef
30.
Zurück zum Zitat Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770CrossRef Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770CrossRef
31.
Zurück zum Zitat Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRef Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRef
32.
Zurück zum Zitat Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin
33.
Zurück zum Zitat Srituravanich W, Fang N, Durant S, Ambati M, Sun C, Zhang X (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22(6):3475–3478CrossRef Srituravanich W, Fang N, Durant S, Ambati M, Sun C, Zhang X (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22(6):3475–3478CrossRef
34.
Zurück zum Zitat Liu ZW, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729CrossRef Liu ZW, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729CrossRef
35.
Zurück zum Zitat Shao DB, Chen SC (2005) Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl Phys Lett 86(25):253107CrossRef Shao DB, Chen SC (2005) Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl Phys Lett 86(25):253107CrossRef
36.
Zurück zum Zitat Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232CrossRef Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232CrossRef
37.
Zurück zum Zitat Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2(6):365–370CrossRef Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2(6):365–370CrossRef
38.
Zurück zum Zitat Cubukcu E, Yu NF, Smythe EJ, Diehl L, Crozier KB, Capasso F (2008) Plasmonic laser antennas and related devices. Ieee J Sel Top Quant 14(6):1448–1461CrossRef Cubukcu E, Yu NF, Smythe EJ, Diehl L, Crozier KB, Capasso F (2008) Plasmonic laser antennas and related devices. Ieee J Sel Top Quant 14(6):1448–1461CrossRef
39.
Zurück zum Zitat Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632CrossRef Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632CrossRef
40.
Zurück zum Zitat Flores SM, Toca-Herrera JL (2009) The new future of scanning probe microscopy: combining atomic force microscopy with other surface-sensitive techniques, optical and microscopy fluorescence techniques. Nanoscale 1(1):40–49CrossRef Flores SM, Toca-Herrera JL (2009) The new future of scanning probe microscopy: combining atomic force microscopy with other surface-sensitive techniques, optical and microscopy fluorescence techniques. Nanoscale 1(1):40–49CrossRef
41.
Zurück zum Zitat Gerardy JM, Ausloos M (1982) Absorption-spectrum of clusters of spheres from the general-solution of Maxwell equations. 2. Optical-properties of aggregated metal spheres. Phys Rev B 25(6):4204–4229CrossRef Gerardy JM, Ausloos M (1982) Absorption-spectrum of clusters of spheres from the general-solution of Maxwell equations. 2. Optical-properties of aggregated metal spheres. Phys Rev B 25(6):4204–4229CrossRef
42.
Zurück zum Zitat Zhao J, Pinchuk AO, Mcmahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720CrossRef Zhao J, Pinchuk AO, Mcmahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720CrossRef
43.
Zurück zum Zitat Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and x-ray microanalysis. Springer, New YorkCrossRef Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and x-ray microanalysis. Springer, New YorkCrossRef
44.
Zurück zum Zitat Williams DB, Barry Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New York Williams DB, Barry Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New York
45.
Zurück zum Zitat Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRef Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRef
46.
Zurück zum Zitat Abashin M (2009) Near-field characterization of photonic nanodevices: near-field scanning optical microscopy (NSOM) characterization of photonic nanodevices and nanoscale optical phenomena. Saarbrücken, Germany Abashin M (2009) Near-field characterization of photonic nanodevices: near-field scanning optical microscopy (NSOM) characterization of photonic nanodevices and nanoscale optical phenomena. Saarbrücken, Germany
47.
Zurück zum Zitat Franssila S (2004) Introduction to microfabrication. Wiley-Blackwell, Chichester Franssila S (2004) Introduction to microfabrication. Wiley-Blackwell, Chichester
48.
Zurück zum Zitat Orloff J, Swanson L, Utlaut M (2002) High resolution focused Ion beams: FIB and applications. Springer, BerlinCrossRef Orloff J, Swanson L, Utlaut M (2002) High resolution focused Ion beams: FIB and applications. Springer, BerlinCrossRef
49.
Zurück zum Zitat Gersten JI (1980) The effect of surface-roughness on surface enhanced Raman-scattering. J Chem Phys 72(10):5779–5780CrossRef Gersten JI (1980) The effect of surface-roughness on surface enhanced Raman-scattering. J Chem Phys 72(10):5779–5780CrossRef
50.
Zurück zum Zitat Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces. J Chem Phys 73(7):3023–3037CrossRef Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces. J Chem Phys 73(7):3023–3037CrossRef
51.
Zurück zum Zitat Gersten JI, Nitzan A (1985) Photophysics and photochemistry near surfaces and small particles. Surf Sci 158(1–3):165–189CrossRef Gersten JI, Nitzan A (1985) Photophysics and photochemistry near surfaces and small particles. Surf Sci 158(1–3):165–189CrossRef
52.
Zurück zum Zitat Wang DS, Kerker M (1981) Enhanced Raman-scattering by molecules adsorbed at the surface of colloidal spheroids. Phys Rev B 24(4):1777–1790CrossRef Wang DS, Kerker M (1981) Enhanced Raman-scattering by molecules adsorbed at the surface of colloidal spheroids. Phys Rev B 24(4):1777–1790CrossRef
53.
Zurück zum Zitat Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402 Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402
54.
Zurück zum Zitat Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366CrossRef Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366CrossRef
55.
Zurück zum Zitat GarciaVidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77(6):1163–1166CrossRef GarciaVidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77(6):1163–1166CrossRef
56.
Zurück zum Zitat Shalaev VM, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57(20):13265–13288CrossRef Shalaev VM, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57(20):13265–13288CrossRef
57.
Zurück zum Zitat Markel VA, Shalaev VM, Zhang P, Huynh W, Tay L, Haslett TL, Moskovits M (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys Rev B 59(16):10903–10909CrossRef Markel VA, Shalaev VM, Zhang P, Huynh W, Tay L, Haslett TL, Moskovits M (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys Rev B 59(16):10903–10909CrossRef
58.
Zurück zum Zitat Le Ru EC, Etchegoin PG, Meyer M (2006) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125(20):204701 Le Ru EC, Etchegoin PG, Meyer M (2006) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125(20):204701
59.
Zurück zum Zitat Etchegoin PG, Galloway C, Le Ru EC (2006) Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys Chem Chem Phys 8(22):2624–2628CrossRef Etchegoin PG, Galloway C, Le Ru EC (2006) Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Phys Chem Chem Phys 8(22):2624–2628CrossRef
61.
Zurück zum Zitat Boyack R, Le Ru EC (2009) Investigation of particle shape and size effects in SERS using T-matrix calculations. Phys Chem Chem Phys 11(34):7398–7405CrossRef Boyack R, Le Ru EC (2009) Investigation of particle shape and size effects in SERS using T-matrix calculations. Phys Chem Chem Phys 11(34):7398–7405CrossRef
62.
Zurück zum Zitat Kahl M, Voges E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61(20):14078–14088CrossRef Kahl M, Voges E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61(20):14078–14088CrossRef
63.
Zurück zum Zitat Norton SJ, Vo-Dinh T (2008) Optical response of linear chains of metal nanospheres and nanospheroids. J Opt Soc Am A 25(11):2767–2775CrossRef Norton SJ, Vo-Dinh T (2008) Optical response of linear chains of metal nanospheres and nanospheroids. J Opt Soc Am A 25(11):2767–2775CrossRef
64.
Zurück zum Zitat Wang ZB, Luk’yanchuk BS, Guo W, Edwardson SP, Whitehead DJ, Li L, Liu Z, Watkins KG (2008) The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys 128(9):094705 Wang ZB, Luk’yanchuk BS, Guo W, Edwardson SP, Whitehead DJ, Li L, Liu Z, Watkins KG (2008) The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys 128(9):094705
65.
Zurück zum Zitat Perassi EA, Canali LR, Coronado EA (2009) Enhancement and confinement analysis of the electromagnetic fields inside Hot spots. J Phys Chem C 113(16):6315–6319CrossRef Perassi EA, Canali LR, Coronado EA (2009) Enhancement and confinement analysis of the electromagnetic fields inside Hot spots. J Phys Chem C 113(16):6315–6319CrossRef
66.
Zurück zum Zitat Li SZ, Pedano ML, Chang SH, Mirkin CA, Schatz GC (2010) Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett 10(5):1722–1727CrossRef Li SZ, Pedano ML, Chang SH, Mirkin CA, Schatz GC (2010) Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett 10(5):1722–1727CrossRef
67.
Zurück zum Zitat Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. P Natl Acad Sci USA 103(36):13300–13303CrossRef Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. P Natl Acad Sci USA 103(36):13300–13303CrossRef
68.
Zurück zum Zitat Pettinger B, Moerl L (1983) Influence of foreign metal atoms deposited at electrodes on local and nonlocal processes in surface enhanced Raman-scattering. J Electron Spectrosc 29:383–395CrossRef Pettinger B, Moerl L (1983) Influence of foreign metal atoms deposited at electrodes on local and nonlocal processes in surface enhanced Raman-scattering. J Electron Spectrosc 29:383–395CrossRef
69.
Zurück zum Zitat Persson BNJ (1981) On the theory of surface-enhanced Raman-scattering. Chem Phys Lett 82(3):561–565CrossRef Persson BNJ (1981) On the theory of surface-enhanced Raman-scattering. Chem Phys Lett 82(3):561–565CrossRef
70.
Zurück zum Zitat Otto A (2002) What is observed in single molecule SERS, and why? J Raman Spectrosc 33(8):593–598CrossRef Otto A (2002) What is observed in single molecule SERS, and why? J Raman Spectrosc 33(8):593–598CrossRef
71.
Zurück zum Zitat Peyser-Capadona L, Zheng J, Gonzalez JI, Lee TH, Patel SA, Dickson RM (2005) Nanoparticle-free single molecule anti-stokes Raman spectroscopy. Phys Rev Lett 94(5):058301 Peyser-Capadona L, Zheng J, Gonzalez JI, Lee TH, Patel SA, Dickson RM (2005) Nanoparticle-free single molecule anti-stokes Raman spectroscopy. Phys Rev Lett 94(5):058301
72.
Zurück zum Zitat Zhao LL, Jensen L, Schatz GC (2006) Pyridine-Ag-20 cluster: a model system for studying surface-enhanced Raman scattering. J Am Chem Soc 128(9):2911–2919CrossRef Zhao LL, Jensen L, Schatz GC (2006) Pyridine-Ag-20 cluster: a model system for studying surface-enhanced Raman scattering. J Am Chem Soc 128(9):2911–2919CrossRef
73.
Zurück zum Zitat Aikens CM, Schatz GC (2006) TDDFT studies of absorption and SERS spectra of pyridine interacting with Au-20. J Phys Chem A 110(49):13317–13324CrossRef Aikens CM, Schatz GC (2006) TDDFT studies of absorption and SERS spectra of pyridine interacting with Au-20. J Phys Chem A 110(49):13317–13324CrossRef
74.
Zurück zum Zitat Brewer KE, Aikens CM (2010) TDDFT investigation of surface-enhanced Raman scattering of HCN and CN- on Ag-20. J Phys Chem A 114(33):8858–8863CrossRef Brewer KE, Aikens CM (2010) TDDFT investigation of surface-enhanced Raman scattering of HCN and CN- on Ag-20. J Phys Chem A 114(33):8858–8863CrossRef
75.
Zurück zum Zitat Shegai T, Vaskevich A, Rubinstein I, Haran G (2009) Raman spectroelectrochemistry of molecules within individual electromagnetic Hot spots. J Am Chem Soc 131(40):14390–14398CrossRef Shegai T, Vaskevich A, Rubinstein I, Haran G (2009) Raman spectroelectrochemistry of molecules within individual electromagnetic Hot spots. J Am Chem Soc 131(40):14390–14398CrossRef
76.
Zurück zum Zitat Elfick APD, Downes AR, Mouras R (2010) Development of tip-enhanced optical spectroscopy for biological applications: a review. Anal Bioanal Chem 396(1):45–52CrossRef Elfick APD, Downes AR, Mouras R (2010) Development of tip-enhanced optical spectroscopy for biological applications: a review. Anal Bioanal Chem 396(1):45–52CrossRef
77.
Zurück zum Zitat Domke KF, Pettinger B (2010) Studying surface chemistry beyond the diffraction limit: 10 years of TERS. Chemphyschem 11(7):1365–1373CrossRef Domke KF, Pettinger B (2010) Studying surface chemistry beyond the diffraction limit: 10 years of TERS. Chemphyschem 11(7):1365–1373CrossRef
78.
Zurück zum Zitat Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136CrossRef Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136CrossRef
79.
Zurück zum Zitat Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37(5):921–930CrossRef Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37(5):921–930CrossRef
80.
Zurück zum Zitat Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett 90(9):095503 Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett 90(9):095503
81.
Zurück zum Zitat Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9):096101 Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9):096101
82.
Zurück zum Zitat Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111(4):1733–1738CrossRef Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111(4):1733–1738CrossRef
83.
Zurück zum Zitat Berweger S, Raschke MB (2010) Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Anal Bioanal Chem 396(1):115–123CrossRef Berweger S, Raschke MB (2010) Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique. Anal Bioanal Chem 396(1):115–123CrossRef
84.
Zurück zum Zitat Motohashi M, Hayazawa N, Tarun A, Kawata S (2008) Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals. J Appl Phys 103(3):034309 Motohashi M, Hayazawa N, Tarun A, Kawata S (2008) Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals. J Appl Phys 103(3):034309
85.
Zurück zum Zitat Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys Rev B 73(19):193406 Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys Rev B 73(19):193406
86.
Zurück zum Zitat Domke KF, Pettinger B (2007) Comment on “scanning-probe Raman spectroscopy with single-molecule sensitivity”. Phys Rev B 75(23):236401 Domke KF, Pettinger B (2007) Comment on “scanning-probe Raman spectroscopy with single-molecule sensitivity”. Phys Rev B 75(23):236401
87.
Zurück zum Zitat Neacsu CC, Dreyer J, Behr N, Raschke MB (2007) Reply to “comment on ‘scanning-probe Raman spectroscopy with single-molecule sensitivity’”. Phys Rev B 75(23):236402 Neacsu CC, Dreyer J, Behr N, Raschke MB (2007) Reply to “comment on ‘scanning-probe Raman spectroscopy with single-molecule sensitivity’”. Phys Rev B 75(23):236402
88.
Zurück zum Zitat Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100(23):236101 Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100(23):236101
89.
Zurück zum Zitat Zhang D, Domke KF, Pettinger B (2010) Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). Chemphyschem 11(8):1662–1665CrossRef Zhang D, Domke KF, Pettinger B (2010) Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). Chemphyschem 11(8):1662–1665CrossRef
90.
Zurück zum Zitat Geshev PI, Fischer U, Fuchs H (2010) Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film. Phys Rev B 81(12):125441 Geshev PI, Fischer U, Fuchs H (2010) Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film. Phys Rev B 81(12):125441
91.
Zurück zum Zitat Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603(10–12):1335–1341CrossRef Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603(10–12):1335–1341CrossRef
92.
Zurück zum Zitat Sackrow M, Stanciu C, Lieb MA, Meixner AJ (2008) Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem 9(2):316–320CrossRef Sackrow M, Stanciu C, Lieb MA, Meixner AJ (2008) Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem 9(2):316–320CrossRef
93.
Zurück zum Zitat Berweger S, Raschke MB (2009) Polar phonon mode selection rules in tip-enhanced Raman scattering. J Raman Spectrosc 40(10):1413–1419CrossRef Berweger S, Raschke MB (2009) Polar phonon mode selection rules in tip-enhanced Raman scattering. J Raman Spectrosc 40(10):1413–1419CrossRef
94.
Zurück zum Zitat Domke KF, Pettinger B (2009) Tip-enhanced Raman spectroscopy of 6 H-SiC with graphene adlayers: selective suppression of E1 modes. J Raman Spectrosc 40(10):1427–1433CrossRef Domke KF, Pettinger B (2009) Tip-enhanced Raman spectroscopy of 6 H-SiC with graphene adlayers: selective suppression of E1 modes. J Raman Spectrosc 40(10):1427–1433CrossRef
95.
Zurück zum Zitat Le Ru EC, Meyer M, Blackie E, Etchegoin PG (2008) Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J Raman Spectrosc 39(9):1127–1134CrossRef Le Ru EC, Meyer M, Blackie E, Etchegoin PG (2008) Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J Raman Spectrosc 39(9):1127–1134CrossRef
96.
Zurück zum Zitat Kneipp K, Kneipp H (2006) Surface-enhanced Raman scattering on silver nanoparticles in different aggregation stages. Isr J Chem 46(3):299–305 Kneipp K, Kneipp H (2006) Surface-enhanced Raman scattering on silver nanoparticles in different aggregation stages. Isr J Chem 46(3):299–305
97.
Zurück zum Zitat Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6 G molecule. J Am Chem Soc 131(2):849–854CrossRef Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6 G molecule. J Am Chem Soc 131(2):849–854CrossRef
98.
Zurück zum Zitat Moskovits M (1982) Surface selection-rules. J Chem Phys 77(9):4408–4416CrossRef Moskovits M (1982) Surface selection-rules. J Chem Phys 77(9):4408–4416CrossRef
99.
Zurück zum Zitat Moskovits M, Suh JS (1984) Surface selection-rules for surface-enhanced Raman-spectroscopy – calculations and application to the surface-enhanced Raman-spectrum of phthalazine on silver. J Phys Chem-Us 88(23):5526–5530CrossRef Moskovits M, Suh JS (1984) Surface selection-rules for surface-enhanced Raman-spectroscopy – calculations and application to the surface-enhanced Raman-spectrum of phthalazine on silver. J Phys Chem-Us 88(23):5526–5530CrossRef
100.
Zurück zum Zitat Moskovits M, Dilella DP, Maynard KJ (1988) Surface Raman-spectroscopy of a number of cyclic aromatic-molecules adsorbed on silver – selection-rules and molecular-reorientation. Langmuir 4(1):67–76CrossRef Moskovits M, Dilella DP, Maynard KJ (1988) Surface Raman-spectroscopy of a number of cyclic aromatic-molecules adsorbed on silver – selection-rules and molecular-reorientation. Langmuir 4(1):67–76CrossRef
101.
Zurück zum Zitat Shegai TO, Haran G (2006) Probing the Raman scattering tensors of individual molecules. J Phys Chem B 110(6):2459–2461CrossRef Shegai TO, Haran G (2006) Probing the Raman scattering tensors of individual molecules. J Phys Chem B 110(6):2459–2461CrossRef
102.
Zurück zum Zitat Hayes W, Loudon R (1978) Scattering of light by crystals. Wiley-Interscience, New York Hayes W, Loudon R (1978) Scattering of light by crystals. Wiley-Interscience, New York
103.
Zurück zum Zitat Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6 G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106(33):8096–8099CrossRef Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6 G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106(33):8096–8099CrossRef
104.
Zurück zum Zitat Xu HX, Kall M (2003) Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chemphyschem 4(9):1001–1005CrossRef Xu HX, Kall M (2003) Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chemphyschem 4(9):1001–1005CrossRef
105.
Zurück zum Zitat Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37(5):946–954CrossRef Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37(5):946–954CrossRef
106.
Zurück zum Zitat Zhang ZL, Yin YF, Jiang JW, Mo YJ (2009) Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy. J Mol Struct 920(1–3):297–300CrossRef Zhang ZL, Yin YF, Jiang JW, Mo YJ (2009) Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy. J Mol Struct 920(1–3):297–300CrossRef
107.
Zurück zum Zitat Schleifenbaum F, Blum C, Subramaniam V, Meixner AJ (2009) Single-molecule spectral dynamics at room temperature. Mol Phys 107(18):1923–1942CrossRef Schleifenbaum F, Blum C, Subramaniam V, Meixner AJ (2009) Single-molecule spectral dynamics at room temperature. Mol Phys 107(18):1923–1942CrossRef
108.
Zurück zum Zitat Emory SR, Jensen RA, Wenda T, Han MY, Nie SM (2006) Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss 132:249–259CrossRef Emory SR, Jensen RA, Wenda T, Han MY, Nie SM (2006) Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss 132:249–259CrossRef
109.
Zurück zum Zitat Nitzan A, Brus LE (1981) Theoretical-model for enhanced photochemistry on rough surfaces. J Chem Phys 75(5):2205–2214CrossRef Nitzan A, Brus LE (1981) Theoretical-model for enhanced photochemistry on rough surfaces. J Chem Phys 75(5):2205–2214CrossRef
110.
Zurück zum Zitat Goncher GM, Parsons CA, Harris CB (1984) Photochemistry on rough metal-surfaces. J Phys Chem 88(19):4200–4209CrossRef Goncher GM, Parsons CA, Harris CB (1984) Photochemistry on rough metal-surfaces. J Phys Chem 88(19):4200–4209CrossRef
111.
Zurück zum Zitat Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392CrossRef Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392CrossRef
112.
Zurück zum Zitat Maher RC, Zhang T, Cohen LF, Gallop JC, Liu FM, Green M (2009) Towards a metrological determination of the performance of SERS media. Phys Chem Chem Phys 11(34):7463–7468CrossRef Maher RC, Zhang T, Cohen LF, Gallop JC, Liu FM, Green M (2009) Towards a metrological determination of the performance of SERS media. Phys Chem Chem Phys 11(34):7463–7468CrossRef
113.
Zurück zum Zitat Etchegoin PG, Meyer M, Le Ru EC (2007) Statistics of single molecule SERS signals: is there a Poisson distribution of intensities? Phys Chem Chem Phys 9(23):3006–3010CrossRef Etchegoin PG, Meyer M, Le Ru EC (2007) Statistics of single molecule SERS signals: is there a Poisson distribution of intensities? Phys Chem Chem Phys 9(23):3006–3010CrossRef
114.
Zurück zum Zitat Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-mokeule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110(4):1944–1948CrossRef Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-mokeule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110(4):1944–1948CrossRef
115.
Zurück zum Zitat Blackie E, Le Ru EC, Meyer M, Timmer M, Burkett B, Northcote P, Etchegoin PG (2008) Bi-analyte SERS with isotopically edited dyes. Phys Chem Chem Phys 10(28):4147–4153CrossRef Blackie E, Le Ru EC, Meyer M, Timmer M, Burkett B, Northcote P, Etchegoin PG (2008) Bi-analyte SERS with isotopically edited dyes. Phys Chem Chem Phys 10(28):4147–4153CrossRef
116.
Zurück zum Zitat Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc 129(51):16249–16256CrossRef Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc 129(51):16249–16256CrossRef
117.
Zurück zum Zitat Goulet PJG, Aroca RF (2007) Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance Raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers. Anal Chem 79(7):2728–2734CrossRef Goulet PJG, Aroca RF (2007) Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance Raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers. Anal Chem 79(7):2728–2734CrossRef
118.
Zurück zum Zitat dos Santos DP, Andrade GFS, Temperini MLA, Brolo AG (2009) Electrochemical control of the time-dependent intensity fluctuations in surface-enhanced Raman scattering (SERS). J Phys Chem C 113(41):17737–17744CrossRef dos Santos DP, Andrade GFS, Temperini MLA, Brolo AG (2009) Electrochemical control of the time-dependent intensity fluctuations in surface-enhanced Raman scattering (SERS). J Phys Chem C 113(41):17737–17744CrossRef
119.
Zurück zum Zitat Camargo PHC, Rycenga M, Au L, Xia YN (2009) Isolating and probing the hot spot formed between two silver nanocubes. Angew Chem Int Edit 48(12):2180–2184CrossRef Camargo PHC, Rycenga M, Au L, Xia YN (2009) Isolating and probing the hot spot formed between two silver nanocubes. Angew Chem Int Edit 48(12):2180–2184CrossRef
120.
Zurück zum Zitat Chen C, Hutchison JA, Clemente F, Kox R, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P (2009) Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. Angew Chem Int Edit 48(52):9932–9935CrossRef Chen C, Hutchison JA, Clemente F, Kox R, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P (2009) Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. Angew Chem Int Edit 48(52):9932–9935CrossRef
121.
Zurück zum Zitat Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-i H, Hofkens J, Lagae L, Maes G, Borghs G (2009) Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small 5(24):2876–2882CrossRef Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-i H, Hofkens J, Lagae L, Maes G, Borghs G (2009) Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small 5(24):2876–2882CrossRef
122.
Zurück zum Zitat (a) Xu HX, Kall M (2002) Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett 89(24); (b) Svedberg F, Kall M (2006) On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss 132:35–44 (a) Xu HX, Kall M (2002) Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett 89(24); (b) Svedberg F, Kall M (2006) On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss 132:35–44
123.
Zurück zum Zitat Osborne MA, Balasubramanian S, Furey WS, Klenerman D (1998) Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J Phys Chem B 102(17):3160–3167CrossRef Osborne MA, Balasubramanian S, Furey WS, Klenerman D (1998) Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J Phys Chem B 102(17):3160–3167CrossRef
124.
Zurück zum Zitat Svedberg F, Li ZP, Xu HX, Kall M (2006) Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett 6(12):2639–2641CrossRef Svedberg F, Li ZP, Xu HX, Kall M (2006) Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett 6(12):2639–2641CrossRef
125.
Zurück zum Zitat Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444–2447CrossRef Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444–2447CrossRef
126.
Zurück zum Zitat Maher RC, Galloway CM, Le Ru EC, Cohena LF, Etchegoin PG (2008) Vibrational pumping in surface enhanced Raman scattering (SERS). Chem Soc Rev 37(5):965–979CrossRef Maher RC, Galloway CM, Le Ru EC, Cohena LF, Etchegoin PG (2008) Vibrational pumping in surface enhanced Raman scattering (SERS). Chem Soc Rev 37(5):965–979CrossRef
127.
Zurück zum Zitat Haslett TL, Tay L, Moskovits M (2000) Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? J Chem Phys 113(4):1641–1646CrossRef Haslett TL, Tay L, Moskovits M (2000) Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? J Chem Phys 113(4):1641–1646CrossRef
128.
Zurück zum Zitat (a) Brolo AG, Sanderson AC, Smith AP (2004) Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes-Raman scattering for molecules adsorbed on a silver electrode. Physical Review B 69(4); (b) Maher RC, Dalley M, Le Ru EC, Cohen LF, Etchegoin PG, Hartigan H, Brown RJC, Milton MJT (2004) Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids. J Chem Phys 121(18):8901–8910 (a) Brolo AG, Sanderson AC, Smith AP (2004) Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes-Raman scattering for molecules adsorbed on a silver electrode. Physical Review B 69(4); (b) Maher RC, Dalley M, Le Ru EC, Cohen LF, Etchegoin PG, Hartigan H, Brown RJC, Milton MJT (2004) Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids. J Chem Phys 121(18):8901–8910
129.
Zurück zum Zitat Maher RC, Etchegoin PG, Le Ru EC, Cohen LF (2006) A conclusive demonstration of vibrational pumping under surface enhanced Raman scattering conditions. J Phys Chem B 110(24):11757–11760CrossRef Maher RC, Etchegoin PG, Le Ru EC, Cohen LF (2006) A conclusive demonstration of vibrational pumping under surface enhanced Raman scattering conditions. J Phys Chem B 110(24):11757–11760CrossRef
130.
Zurück zum Zitat Galloway CM, Le Ru EC, Etchegoin PG (2009) Single-molecule vibrational pumping in SERS. Phys Chem Chem Phys 11(34):7372–7380CrossRef Galloway CM, Le Ru EC, Etchegoin PG (2009) Single-molecule vibrational pumping in SERS. Phys Chem Chem Phys 11(34):7372–7380CrossRef
131.
Zurück zum Zitat Kozich V, Werncke W (2010) The vibrational pumping mechanism in surface-enhanced Raman scattering: a subpicosecond time-resolved study. J Phys Chem C 114(23):10484–10488CrossRef Kozich V, Werncke W (2010) The vibrational pumping mechanism in surface-enhanced Raman scattering: a subpicosecond time-resolved study. J Phys Chem C 114(23):10484–10488CrossRef
132.
Zurück zum Zitat Tsai DP, Kovacs J, Wang Z, Moskovits M, Shalaev VM, Suh JS, Botet R (1994) Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Phys Rev Lett 72(26):4149CrossRef Tsai DP, Kovacs J, Wang Z, Moskovits M, Shalaev VM, Suh JS, Botet R (1994) Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Phys Rev Lett 72(26):4149CrossRef
133.
Zurück zum Zitat Bozhevolnyi SI, Vohnsen B, Smolyaninov II, Zayats AV (1995) Direct observation of surface polariton localization caused by surface-roughness. Opt Commun 117(5–6):417–423CrossRef Bozhevolnyi SI, Vohnsen B, Smolyaninov II, Zayats AV (1995) Direct observation of surface polariton localization caused by surface-roughness. Opt Commun 117(5–6):417–423CrossRef
134.
Zurück zum Zitat Lin HY, Huang CH, Chang CH, Lan YC, Chui HC (2010) Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt Express 18(1):165–172CrossRef Lin HY, Huang CH, Chang CH, Lan YC, Chui HC (2010) Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt Express 18(1):165–172CrossRef
135.
Zurück zum Zitat Zhang P, Smith S, Rumbles G, Himmel ME (2005) Direct imaging of surface-enhanced Raman scattering in the near field. Langmuir 21(2):520–523CrossRef Zhang P, Smith S, Rumbles G, Himmel ME (2005) Direct imaging of surface-enhanced Raman scattering in the near field. Langmuir 21(2):520–523CrossRef
136.
Zurück zum Zitat Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130(38):12616–12617CrossRef Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130(38):12616–12617CrossRef
137.
Zurück zum Zitat Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897CrossRef Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897CrossRef
138.
Zurück zum Zitat Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394(7):1729–1745CrossRef Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394(7):1729–1745CrossRef
139.
Zurück zum Zitat Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2975CrossRef Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2975CrossRef
140.
Zurück zum Zitat Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Accounts Chem Res 40(10):1067–1076CrossRef Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Accounts Chem Res 40(10):1067–1076CrossRef
141.
Zurück zum Zitat Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851CrossRef Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851CrossRef
142.
Zurück zum Zitat Camargo PHC, Au L, Rycenga M, Li WY, Xia YN (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484(4–6):304–308CrossRef Camargo PHC, Au L, Rycenga M, Li WY, Xia YN (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484(4–6):304–308CrossRef
143.
Zurück zum Zitat Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1):165–170CrossRef Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1):165–170CrossRef
144.
Zurück zum Zitat Li WB, Guo YY, Zhang P (2010) General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-tags. J Phys Chem C 114(16):7263–7268CrossRef Li WB, Guo YY, Zhang P (2010) General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-tags. J Phys Chem C 114(16):7263–7268CrossRef
145.
Zurück zum Zitat Cui B, Clime L, Li K, Veres T (2008) Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19(14):145302 Cui B, Clime L, Li K, Veres T (2008) Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19(14):145302
146.
Zurück zum Zitat Hsu MS, Cao YW, Wang HW, Pan YS, Lee BH, Huang CL (2010) Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions. Chemphyschem 11(8):1742–1748CrossRef Hsu MS, Cao YW, Wang HW, Pan YS, Lee BH, Huang CL (2010) Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions. Chemphyschem 11(8):1742–1748CrossRef
147.
Zurück zum Zitat Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128(7):2200–2201CrossRef Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128(7):2200–2201CrossRef
148.
Zurück zum Zitat Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem C 111(49):17985–17988CrossRef Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of SERS. J Phys Chem C 111(49):17985–17988CrossRef
149.
Zurück zum Zitat Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26(18):14943–14950CrossRef Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26(18):14943–14950CrossRef
150.
Zurück zum Zitat Sajanlal PR, Pradeep T (2009) Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res 2(4):306–320CrossRef Sajanlal PR, Pradeep T (2009) Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res 2(4):306–320CrossRef
151.
Zurück zum Zitat Naumov II, Li ZY, Bratkovsky AM (2010) Plasmonic resonances and hot spots in Ag octopods. Appl Phys Lett 96(3):033105 Naumov II, Li ZY, Bratkovsky AM (2010) Plasmonic resonances and hot spots in Ag octopods. Appl Phys Lett 96(3):033105
152.
Zurück zum Zitat Chaney SB, Zhang ZY, Zhao YP (2006) Anomalous polarized absorbance spectra of aligned Ag nanorod arrays. Appl Phys Lett 89(5):053117 Chaney SB, Zhang ZY, Zhao YP (2006) Anomalous polarized absorbance spectra of aligned Ag nanorod arrays. Appl Phys Lett 89(5):053117
153.
Zurück zum Zitat Liu YJ, Zhao YP (2008) Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates. Phys Rev B 78(7):075436CrossRef Liu YJ, Zhao YP (2008) Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates. Phys Rev B 78(7):075436CrossRef
154.
Zurück zum Zitat Liu YJ, Zhang ZY, Zhao Q, Dluhy RA, Zhao YP (2009) Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect. J Phys Chem C 113(22):9664–9669CrossRef Liu YJ, Zhang ZY, Zhao Q, Dluhy RA, Zhao YP (2009) Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect. J Phys Chem C 113(22):9664–9669CrossRef
155.
Zurück zum Zitat Zhao YP, Chaney SB, Shanmukh S, Dluhy RA (2006) Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B 110(7):3153–3157CrossRef Zhao YP, Chaney SB, Shanmukh S, Dluhy RA (2006) Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B 110(7):3153–3157CrossRef
156.
Zurück zum Zitat Camargo PHC, Cobley CM, Rycenga M, Xia YN (2009) Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology 20(43):434020 Camargo PHC, Cobley CM, Rycenga M, Xia YN (2009) Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology 20(43):434020
157.
Zurück zum Zitat Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM (2007) Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc 129(14):4156–4157CrossRef Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM (2007) Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc 129(14):4156–4157CrossRef
158.
Zurück zum Zitat Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers – an approach to sers substrates. Science 267(5204):1629–1632CrossRef Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers – an approach to sers substrates. Science 267(5204):1629–1632CrossRef
159.
Zurück zum Zitat Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef
160.
Zurück zum Zitat Braun G, Pavel I, Morrill AR, Seferos DS, Bazan GC, Reich NO, Moskovits M (2007) Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J Am Chem Soc 129(25):7760–7761CrossRef Braun G, Pavel I, Morrill AR, Seferos DS, Bazan GC, Reich NO, Moskovits M (2007) Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J Am Chem Soc 129(25):7760–7761CrossRef
161.
Zurück zum Zitat Vlckova B, Moskovits M, Pavel I, Siskova K, Sladkova M, Slouf M (2008) Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chem Phys Lett 455(4–6):131–134CrossRef Vlckova B, Moskovits M, Pavel I, Siskova K, Sladkova M, Slouf M (2008) Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chem Phys Lett 455(4–6):131–134CrossRef
162.
Zurück zum Zitat Sladkova M, Vlckova B, Pavel I, Siskova K, Slouf M (2009) Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. J Mol Struct 924–26:567–570CrossRef Sladkova M, Vlckova B, Pavel I, Siskova K, Slouf M (2009) Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. J Mol Struct 924–26:567–570CrossRef
163.
Zurück zum Zitat Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20(22):4359–4363CrossRef Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20(22):4359–4363CrossRef
164.
Zurück zum Zitat DuFort CC, Dragnea B (2010) Bio-enabled synthesis of metamaterials. Ann Rev Phys Chem 61:323–344. Annual Reviews: Palo AltoCrossRef DuFort CC, Dragnea B (2010) Bio-enabled synthesis of metamaterials. Ann Rev Phys Chem 61:323–344. Annual Reviews: Palo AltoCrossRef
165.
Zurück zum Zitat Goulet PJG, Pieczonka NPW, Aroca RF (2005) Mapping single-molecule SERRS from Langmuir-Blodgett monolayers, on nanostructured silver island films. J Raman Spectrosc 36(6–7):574–580CrossRef Goulet PJG, Pieczonka NPW, Aroca RF (2005) Mapping single-molecule SERRS from Langmuir-Blodgett monolayers, on nanostructured silver island films. J Raman Spectrosc 36(6–7):574–580CrossRef
166.
Zurück zum Zitat Mahmoud MA, Tabor CE, El-Sayed MA (2009) Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J Phys Chem C 113(14):5493–5501CrossRef Mahmoud MA, Tabor CE, El-Sayed MA (2009) Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J Phys Chem C 113(14):5493–5501CrossRef
167.
Zurück zum Zitat Mahmoud MA, El-Sayed MA (2008) Comparative study of the assemblies and the resulting Plasmon fields of Langmuir–Blodgett assembled monolayers of silver nanocubes and gold nanocages. J Phys Chem C 112(37):14618–14625CrossRef Mahmoud MA, El-Sayed MA (2008) Comparative study of the assemblies and the resulting Plasmon fields of Langmuir–Blodgett assembled monolayers of silver nanocubes and gold nanocages. J Phys Chem C 112(37):14618–14625CrossRef
168.
Zurück zum Zitat Mahmoud MA, El-Sayed MA (2009) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett 9(8):3025–3031CrossRef Mahmoud MA, El-Sayed MA (2009) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett 9(8):3025–3031CrossRef
169.
Zurück zum Zitat Gopinath A, Boriskina SV, Reinhard BM, Dal Negro L (2009) Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt Express 17(5):3741–3753CrossRef Gopinath A, Boriskina SV, Reinhard BM, Dal Negro L (2009) Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt Express 17(5):3741–3753CrossRef
170.
Zurück zum Zitat Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRef Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRef
171.
Zurück zum Zitat Zhang XY, Whitney AV, Zhao J, Hicks EM, Van Duyne RP (2006) Advances in contemporary nanosphere lithographic techniques. J Nanosci Nanotechno 6(7):1920–1934CrossRef Zhang XY, Whitney AV, Zhao J, Hicks EM, Van Duyne RP (2006) Advances in contemporary nanosphere lithographic techniques. J Nanosci Nanotechno 6(7):1920–1934CrossRef
172.
Zurück zum Zitat Haynes CL, McFarland AD, Smith MT, Hulteen JC, Van Duyne RP (2002) Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J Phys Chem B 106(8):1898–1902CrossRef Haynes CL, McFarland AD, Smith MT, Hulteen JC, Van Duyne RP (2002) Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J Phys Chem B 106(8):1898–1902CrossRef
173.
Zurück zum Zitat Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961CrossRef Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961CrossRef
174.
Zurück zum Zitat Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124(6):061101 Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124(6):061101
175.
Zurück zum Zitat Li K, Clime L, Tay L, Cui B, Geissler M, Veres T (2008) Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells. Anal Chem 80(13):4945–4950CrossRef Li K, Clime L, Tay L, Cui B, Geissler M, Veres T (2008) Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells. Anal Chem 80(13):4945–4950CrossRef
176.
Zurück zum Zitat Abernathy HW, Koep E, Compson C, Cheng Z, Liu ML (2008) Monitoring Ag-Cr interactions in SOFC cathodes using Raman spectroscopy. J Phys Chem C 112(34):13299–13303CrossRef Abernathy HW, Koep E, Compson C, Cheng Z, Liu ML (2008) Monitoring Ag-Cr interactions in SOFC cathodes using Raman spectroscopy. J Phys Chem C 112(34):13299–13303CrossRef
177.
Zurück zum Zitat Su KH, Wei QH, Zhang X (2006) Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks. Appl Phys Lett 88(6):063118 Su KH, Wei QH, Zhang X (2006) Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks. Appl Phys Lett 88(6):063118
178.
Zurück zum Zitat Qin LD, Park S, Huang L, Mirkin CA (2005) On-wire lithography. Science 309(5731):113–115CrossRef Qin LD, Park S, Huang L, Mirkin CA (2005) On-wire lithography. Science 309(5731):113–115CrossRef
179.
Zurück zum Zitat Banholzer MJ, Li SZ, Ketter JB, Rozkiewicz DI, Schatz GC, Mirkin CA (2008) Electrochemical approach to and the physical consequences of preparing nanostructures from gold nanorods with smooth ends. J Phys Chem C 112(40):15729–15734CrossRef Banholzer MJ, Li SZ, Ketter JB, Rozkiewicz DI, Schatz GC, Mirkin CA (2008) Electrochemical approach to and the physical consequences of preparing nanostructures from gold nanorods with smooth ends. J Phys Chem C 112(40):15729–15734CrossRef
180.
Zurück zum Zitat Wei W, Li SZ, Millstone JE, Banholzer MJ, Chen XD, Xu XY, Schatz GC, Mirkin CA (2009) Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires. Angew Chem Int Edit 48(23):4210–4212CrossRef Wei W, Li SZ, Millstone JE, Banholzer MJ, Chen XD, Xu XY, Schatz GC, Mirkin CA (2009) Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires. Angew Chem Int Edit 48(23):4210–4212CrossRef
181.
Zurück zum Zitat Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920CrossRef Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920CrossRef
182.
Zurück zum Zitat Hu JA, Zhang CY (2010) Surface-enhanced Raman scattering technology and its application to gene analysis. Prog Chem 22(8):1641–1647 Hu JA, Zhang CY (2010) Surface-enhanced Raman scattering technology and its application to gene analysis. Prog Chem 22(8):1641–1647
183.
Zurück zum Zitat Golightly RS, Doering WE, Natan MJ (2009) Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10):2859–2869CrossRef Golightly RS, Doering WE, Natan MJ (2009) Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10):2859–2869CrossRef
184.
Zurück zum Zitat Patel BD, Mehta PJ (2010) An overview: application of Raman spectroscopy in pharmaceutical field. Curr Pharm Anal 6(2):131–141CrossRef Patel BD, Mehta PJ (2010) An overview: application of Raman spectroscopy in pharmaceutical field. Curr Pharm Anal 6(2):131–141CrossRef
185.
Zurück zum Zitat Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125(2):588–593CrossRef Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125(2):588–593CrossRef
186.
Zurück zum Zitat Lyandres O, Van Duyne RP, Walsh JT, Glucksberg MR, Mehrotra S (2010) Prediction range estimation from noisy Raman spectra with robust optimization. Analyst 135(8):2111–2118CrossRef Lyandres O, Van Duyne RP, Walsh JT, Glucksberg MR, Mehrotra S (2010) Prediction range estimation from noisy Raman spectra with robust optimization. Analyst 135(8):2111–2118CrossRef
187.
Zurück zum Zitat Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A, Dick JAG, Stevens MM (2010) Exploiting SERS hot spots for disease-specific enzyme detection. J Phys Chem C 114(16):7231–7235CrossRef Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A, Dick JAG, Stevens MM (2010) Exploiting SERS hot spots for disease-specific enzyme detection. J Phys Chem C 114(16):7231–7235CrossRef
188.
Zurück zum Zitat Mazhar D, Ngan S, Waxman J (2006) Improving outcomes in early prostate cancer: part I – adjuvant treatment. BJU Int 98(4):725–730CrossRef Mazhar D, Ngan S, Waxman J (2006) Improving outcomes in early prostate cancer: part I – adjuvant treatment. BJU Int 98(4):725–730CrossRef
Metadaten
Titel
SERS Hot Spots
verfasst von
Robert C. Maher
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20620-7_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.