Skip to main content

2014 | OriginalPaper | Buchkapitel

21. Carbon Nanomaterials: A Review

verfasst von : Nitin Choudhary, Sookhyun Hwang, Wonbong Choi

Erschienen in: Handbook of Nanomaterials Properties

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter explored the advancement of research in carbon nanomaterials (graphene and carbon nanotubes), in the areas of synthesis, properties and applications including electronics, field emission, biological and energy applications. The reported properties and applications of these carbon nanomaterials have opened up new opportunities for the future devices and materials. The knowledge presented here should lead to a better understanding of the key factors that can influence the future research directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kroto HW, Heath JR, O’ Brien SC, Curl SC, Smalley RE (1985) C60: buckministerfullerene. Nature 318:162–163 Kroto HW, Heath JR, O’ Brien SC, Curl SC, Smalley RE (1985) C60: buckministerfullerene. Nature 318:162–163
2.
Zurück zum Zitat Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800 Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800
3.
Zurück zum Zitat Huang X, Yin Z, Wu S, Qil X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902 Huang X, Yin Z, Wu S, Qil X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902
4.
Zurück zum Zitat Choi W, Lahiri I, Seelaboyna R, Kang Y (2010) Synthesis of Graphene and its applications: a review. Crit Rev Solid State Mat Sci 35:52–71 Choi W, Lahiri I, Seelaboyna R, Kang Y (2010) Synthesis of Graphene and its applications: a review. Crit Rev Solid State Mat Sci 35:52–71
5.
Zurück zum Zitat Choi W, Lee J-W (2011) Graphene: synthesis and applications. CRC Press, Boca Raton, Publication Date: October 11 (2011). ISBN 10: 1439861870, 13: 978-1439861875 Choi W, Lee J-W (2011) Graphene: synthesis and applications. CRC Press, Boca Raton, Publication Date: October 11 (2011). ISBN 10: 1439861870, 13: 978-1439861875
6.
Zurück zum Zitat Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed Nanotech Biol Med 4(173) Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed Nanotech Biol Med 4(173)
7.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891 Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891
8.
Zurück zum Zitat Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605 Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605
9.
Zurück zum Zitat Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1(1):17–21 Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1(1):17–21
10.
Zurück zum Zitat Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561 Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561
11.
Zurück zum Zitat Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944 Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944
12.
Zurück zum Zitat Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801 Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801
13.
Zurück zum Zitat Awano Y, Sato S, Nihei M, Sakai T, Ohno Y, Mizutani T (2010) Carbon nanotubes for VLSI: interconnect and transistor applications. Proc IEEE 98(12) Awano Y, Sato S, Nihei M, Sakai T, Ohno Y, Mizutani T (2010) Carbon nanotubes for VLSI: interconnect and transistor applications. Proc IEEE 98(12)
14.
Zurück zum Zitat Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408 Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408
15.
Zurück zum Zitat Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Electron devices meeting, IEDM technical digest. IEEE International, pp 683–686 Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Electron devices meeting, IEDM technical digest. IEEE International, pp 683–686
16.
Zurück zum Zitat Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N (2006) Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Stat Sol (a) 203:3611–3616 Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N (2006) Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Stat Sol (a) 203:3611–3616
17.
Zurück zum Zitat Horibe M, Nihei M, Kondo D, Kawabata A, Awano Y (2005) Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/low-k interconnect processes. Jpn J Appl Phys 44:5309 Horibe M, Nihei M, Kondo D, Kawabata A, Awano Y (2005) Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/low-k interconnect processes. Jpn J Appl Phys 44:5309
18.
Zurück zum Zitat Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotubes. Nature (London) 393(49) Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotubes. Nature (London) 393(49)
19.
Zurück zum Zitat Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447 Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447
20.
Zurück zum Zitat McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85 McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85
21.
Zurück zum Zitat Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, Mcintyre P, Mceuen P, Lundstrom M, Dai H (2002) High-κ dielectrics for advanced carbon nanotube transistors and logic gates. Nat Mater 1:241 Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, Mcintyre P, Mceuen P, Lundstrom M, Dai H (2002) High-κ dielectrics for advanced carbon nanotube transistors and logic gates. Nat Mater 1:241
22.
Zurück zum Zitat Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592 Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592
23.
Zurück zum Zitat Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 38:678–680 Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 38:678–680
24.
Zurück zum Zitat Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013 Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013
25.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 287:637 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 287:637
26.
Zurück zum Zitat Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944 Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944
27.
Zurück zum Zitat Yu MF, Files BF, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552 Yu MF, Files BF, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552
28.
Zurück zum Zitat Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Comp Mater 46:2 Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Comp Mater 46:2
29.
Zurück zum Zitat Lu Q, Bhattacharya B (2005) The role of atomistic simulations in probing the small-scale aspects of fracture – a case study on a single-walled carbon nanotubes. Eng Fract Mech 72:2037–2071 Lu Q, Bhattacharya B (2005) The role of atomistic simulations in probing the small-scale aspects of fracture – a case study on a single-walled carbon nanotubes. Eng Fract Mech 72:2037–2071
30.
Zurück zum Zitat Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452 Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452
31.
Zurück zum Zitat Bathe KJ (1997) Finite element procedures. Prentice-Hall, New Delhi, pp 1–14 Bathe KJ (1997) Finite element procedures. Prentice-Hall, New Delhi, pp 1–14
32.
Zurück zum Zitat Qian D, Dickey E, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870 Qian D, Dickey E, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870
33.
Zurück zum Zitat Xu X, Thwe MM, Christopher S, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81:2833 Xu X, Thwe MM, Christopher S, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81:2833
34.
Zurück zum Zitat Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Comp Sci Technol 67:1813 Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Comp Sci Technol 67:1813
35.
Zurück zum Zitat Xiao KQ, Zhang LC (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39:4481 Xiao KQ, Zhang LC (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39:4481
36.
Zurück zum Zitat Choi Y-K, Gotoh Y, Sugimoto K, Song S-M, Yanagisawa T, Endo M (2005) Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer 46(11489) Choi Y-K, Gotoh Y, Sugimoto K, Song S-M, Yanagisawa T, Endo M (2005) Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer 46(11489)
37.
Zurück zum Zitat Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites by the BEM. Electron J Bound Element 1:316–335 Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites by the BEM. Electron J Bound Element 1:316–335
38.
Zurück zum Zitat Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769 Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769
39.
Zurück zum Zitat Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656 Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656
40.
Zurück zum Zitat Kim P, Shi L, Majumdar A, Mc Euen PL (2001) Thermal transport measurement of individual multiwalled nanotubes. Phys Rev Lett 87:215502 Kim P, Shi L, Majumdar A, Mc Euen PL (2001) Thermal transport measurement of individual multiwalled nanotubes. Phys Rev Lett 87:215502
41.
Zurück zum Zitat Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100 Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100
42.
Zurück zum Zitat Berber S, Kwon Y-K, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616 Berber S, Kwon Y-K, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616
43.
Zurück zum Zitat Che J, Cagin T, Goddard WA (2000) III thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69 Che J, Cagin T, Goddard WA (2000) III thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69
44.
Zurück zum Zitat Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99:255502 Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99:255502
45.
Zurück zum Zitat Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80:1042–1045 Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80:1042–1045
46.
Zurück zum Zitat Bradley K, Jhi S-H, Collins PG, Hone J, Cohen ML, Louie SG, Zettl A (2000) Is the intrinsic thermoelectric power of carbon nanotubes positive ? Phys Rev Lett 85:4361–4364 Bradley K, Jhi S-H, Collins PG, Hone J, Cohen ML, Louie SG, Zettl A (2000) Is the intrinsic thermoelectric power of carbon nanotubes positive ? Phys Rev Lett 85:4361–4364
47.
Zurück zum Zitat Li W, Lu L, Lin ZD, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:R9015 Li W, Lu L, Lin ZD, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:R9015
48.
Zurück zum Zitat Yu CH, Shi L, Yao Z, Li DY, Majumdar A (2005) Thermal conductance and thermopower of an single-wall carbon nanotubes. Nano Lett 5:1842–1846 Yu CH, Shi L, Yao Z, Li DY, Majumdar A (2005) Thermal conductance and thermopower of an single-wall carbon nanotubes. Nano Lett 5:1842–1846
49.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191 Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191
50.
Zurück zum Zitat Freitag M (2011) Graphene: trilayers unraveled. Nat Phys 7:596–597 Freitag M (2011) Graphene: trilayers unraveled. Nat Phys 7:596–597
51.
Zurück zum Zitat Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Cond Matter 20:323202 Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Cond Matter 20:323202
52.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388 Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388
53.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331 Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331
54.
Zurück zum Zitat Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890 Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890
55.
Zurück zum Zitat Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120 Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120
56.
Zurück zum Zitat Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401 Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401
57.
Zurück zum Zitat Xu Z (2009) Graphene nanoribbons under tension. J Compd Theor Nanosci 6(625) Xu Z (2009) Graphene nanoribbons under tension. J Compd Theor Nanosci 6(625)
58.
Zurück zum Zitat Lu Q, Huang R (2010) Effect of edge structure on elastic modulus and fracture of graphene nanoribbons under uniaxial tension. arXiv:1007. 3298 Lu Q, Huang R (2010) Effect of edge structure on elastic modulus and fracture of graphene nanoribbons under uniaxial tension. arXiv:1007. 3298
59.
Zurück zum Zitat Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015 Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015
60.
Zurück zum Zitat Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98:013113 Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98:013113
61.
Zurück zum Zitat Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904 Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904
62.
Zurück zum Zitat Zheng QB, Geng Y, Wang SJ, Li ZG, Kim JK (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315–4322 Zheng QB, Geng Y, Wang SJ, Li ZG, Kim JK (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315–4322
63.
Zurück zum Zitat Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG (2007) Electromechanical resonators from graphene sheets. Science 315:490–493 Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG (2007) Electromechanical resonators from graphene sheets. Science 315:490–493
64.
Zurück zum Zitat Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotech 4:861 Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotech 4:861
65.
Zurück zum Zitat Mizuta H, Ramirez MAG, Tsuchiya Y, Nagami T, Sawai S, Oda S, Okamoto M (2009) Multi-scale simulation of hybrid silicon nano-electromechanical (NEM) information systems. J Autom Mobile Robot Intell Syst 3:58 Mizuta H, Ramirez MAG, Tsuchiya Y, Nagami T, Sawai S, Oda S, Okamoto M (2009) Multi-scale simulation of hybrid silicon nano-electromechanical (NEM) information systems. J Autom Mobile Robot Intell Syst 3:58
66.
Zurück zum Zitat Dutta S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20:8207–8223 Dutta S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20:8207–8223
67.
Zurück zum Zitat Han MY, Ozyilmaz B, Zhang Y (2007) Energy band gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805 Han MY, Ozyilmaz B, Zhang Y (2007) Energy band gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805
68.
Zurück zum Zitat Erdogan E, Popov I, Rocha CG, Cuniberti G, Roche S, Seifert G (2011) Engineering carbon chains from mechanically stretched graphene-based materials. Phys Rev B 83:041401 (R) Erdogan E, Popov I, Rocha CG, Cuniberti G, Roche S, Seifert G (2011) Engineering carbon chains from mechanically stretched graphene-based materials. Phys Rev B 83:041401 (R)
69.
Zurück zum Zitat Topsakal M, Ciraci S (2010) Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys Rev B 81:024107 Topsakal M, Ciraci S (2010) Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys Rev B 81:024107
70.
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109
71.
Zurück zum Zitat Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem 108:19912–19916 Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem 108:19912–19916
72.
Zurück zum Zitat Katsnelson MI (2007) Graphene: carbon in two dimensions. Mat Today 10:20–27 Katsnelson MI (2007) Graphene: carbon in two dimensions. Mat Today 10:20–27
73.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
74.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197
75.
Zurück zum Zitat Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379 Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379
76.
Zurück zum Zitat Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys 2:177 Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys 2:177
77.
Zurück zum Zitat McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403 McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403
78.
Zurück zum Zitat Zhou SY, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770 Zhou SY, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770
79.
Zurück zum Zitat Hass J, Varchon F, Millan-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys Rev Lett 100:125504 Hass J, Varchon F, Millan-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys Rev Lett 100:125504
80.
Zurück zum Zitat Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610 Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610
81.
Zurück zum Zitat Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys Rev Lett 101:086402 Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys Rev Lett 101:086402
82.
Zurück zum Zitat Peres NMR (2009) The electronic properties of graphene and its bilayer. Vacuum 83:1248 Peres NMR (2009) The electronic properties of graphene and its bilayer. Vacuum 83:1248
83.
Zurück zum Zitat Morozov SV, Novoselov KS, Schedin F, Jiang D, Firsov AA, Geim AK (2005) Two-dimensional electron and hole gases at the surface of graphite. Phys Rev B 72:201401 Morozov SV, Novoselov KS, Schedin F, Jiang D, Firsov AA, Geim AK (2005) Two-dimensional electron and hole gases at the surface of graphite. Phys Rev B 72:201401
84.
Zurück zum Zitat McCann E, Fal’ko VI (2006) Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett 96:086805 McCann E, Fal’ko VI (2006) Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett 96:086805
85.
Zurück zum Zitat Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404 Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404
86.
Zurück zum Zitat Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263 Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263
87.
Zurück zum Zitat Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203 Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203
88.
Zurück zum Zitat Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651 Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651
89.
Zurück zum Zitat Saito K, Nakamura J, Natori A (2007) Ballistic thermal conductance of a graphene sheet. Phys Rev B 76:115409 Saito K, Nakamura J, Natori A (2007) Ballistic thermal conductance of a graphene sheet. Phys Rev B 76:115409
90.
Zurück zum Zitat Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558 Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558
91.
Zurück zum Zitat Schabel MC, Martins JL (1992) Energetics of interplanar binding in graphite. Phys Rev B 46:7185 Schabel MC, Martins JL (1992) Energetics of interplanar binding in graphite. Phys Rev B 46:7185
92.
Zurück zum Zitat Liao AD, Wu JZ, Wang XR, Tahy K, Jena D, Dai HJ, Pop E (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801 Liao AD, Wu JZ, Wang XR, Tahy K, Jena D, Dai HJ, Pop E (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801
93.
Zurück zum Zitat Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328:213 Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328:213
94.
Zurück zum Zitat Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett 10:3909 Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett 10:3909
95.
Zurück zum Zitat Qiu B, Ruan X (2012) Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl Phys Lett 100:193101 Qiu B, Ruan X (2012) Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl Phys Lett 100:193101
96.
Zurück zum Zitat Aksamija Z, Knezevic I (2011) Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl Phys Lett 98:141919 Aksamija Z, Knezevic I (2011) Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl Phys Lett 98:141919
97.
Zurück zum Zitat Yamamoto T, Watanabe K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70:245402 Yamamoto T, Watanabe K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70:245402
98.
Zurück zum Zitat Li W, Sevincli H, Cuniberti G, Roche S (2010) Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys Rev B 82:041410 (R) Li W, Sevincli H, Cuniberti G, Roche S (2010) Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys Rev B 82:041410 (R)
99.
Zurück zum Zitat Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nano ribbons. Appl Phys Lett 94:243114-1-3 Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nano ribbons. Appl Phys Lett 94:243114-1-3
100.
Zurück zum Zitat Ong ZY, Pop E (2011) Effect of substrate modes on thermal transport in supported graphene. Phys Rev B 84:075471 Ong ZY, Pop E (2011) Effect of substrate modes on thermal transport in supported graphene. Phys Rev B 84:075471
101.
Zurück zum Zitat Huang Z, Fisher TS, Murthy JY (2010) Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method. J Appl Phys 108:094319 Huang Z, Fisher TS, Murthy JY (2010) Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method. J Appl Phys 108:094319
102.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56
103.
Zurück zum Zitat Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147 Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147
104.
Zurück zum Zitat Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266 Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266
105.
Zurück zum Zitat Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679 Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679
106.
Zurück zum Zitat Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222 Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222
107.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605
108.
Zurück zum Zitat Journet C, Maser WK, Bernier P, Loiseau A, Lamy De La Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758 Journet C, Maser WK, Bernier P, Loiseau A, Lamy De La Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758
109.
Zurück zum Zitat Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Lett 217:191–198 Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Lett 217:191–198
110.
Zurück zum Zitat Saito Y, Okuda M, Fujimoto N, Yoshikawa T, Tomita M, Hayashi T (1994) Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation. Jpn J Appl Phys 33:L526–L529 Saito Y, Okuda M, Fujimoto N, Yoshikawa T, Tomita M, Hayashi T (1994) Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation. Jpn J Appl Phys 33:L526–L529
111.
Zurück zum Zitat Chen B, Zhao X, Inoue S, Ando Y (2010) Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method. J Nanosci Nanotechnol 10:3973–3977 Chen B, Zhao X, Inoue S, Ando Y (2010) Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method. J Nanosci Nanotechnol 10:3973–3977
112.
Zurück zum Zitat Fan WW, Zhao J, Lv YK, Bao WR, Liu XG (2010) Synthesis of SWNTs from charcoal by arc-discharging. J Wuhan Univ Technol Mater Sci Ed 25:194–196 Fan WW, Zhao J, Lv YK, Bao WR, Liu XG (2010) Synthesis of SWNTs from charcoal by arc-discharging. J Wuhan Univ Technol Mater Sci Ed 25:194–196
113.
Zurück zum Zitat Wang HF, Li ZH, Inoue S, Ando Y (2010) Influence of Mo on the growth of single-walled carbon nanotubes in arc discharge. J Nanosci Nanotechnol 10:3988–3993 Wang HF, Li ZH, Inoue S, Ando Y (2010) Influence of Mo on the growth of single-walled carbon nanotubes in arc discharge. J Nanosci Nanotechnol 10:3988–3993
114.
Zurück zum Zitat Shimotani K, Anazawa K, Watanabe H, Shimizu M (2001) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys A Mater Sci Process 73:451–454 Shimotani K, Anazawa K, Watanabe H, Shimizu M (2001) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys A Mater Sci Process 73:451–454
115.
Zurück zum Zitat Jiang Y, Wang H, Shang XF, Li ZH, Wang M (2009) Influence of NH3 atmosphere on the growth and structures of carbon nanotubes synthesized by the arc-discharge method. Inorg Mater 45:1237–1239 Jiang Y, Wang H, Shang XF, Li ZH, Wang M (2009) Influence of NH3 atmosphere on the growth and structures of carbon nanotubes synthesized by the arc-discharge method. Inorg Mater 45:1237–1239
116.
Zurück zum Zitat Parkansky N, Boxman RL, Alterkop B, Zontag I, Lereah Y, Barkay Z (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37:2715–2719 Parkansky N, Boxman RL, Alterkop B, Zontag I, Lereah Y, Barkay Z (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37:2715–2719
117.
Zurück zum Zitat Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, Suh JH, Park CK (2003) High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Process 76:285–286 Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, Suh JH, Park CK (2003) High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Process 76:285–286
118.
Zurück zum Zitat Guo JJ, Wang XM, Yao YL, Yang XW, Liu XG, Xu BS (2007) Structure of nanocarbons prepared by arc discharge in water. Mater Chem Phys 105:175–178 Guo JJ, Wang XM, Yao YL, Yang XW, Liu XG, Xu BS (2007) Structure of nanocarbons prepared by arc discharge in water. Mater Chem Phys 105:175–178
119.
Zurück zum Zitat Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54 Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54
120.
Zurück zum Zitat Lebel LL, Aissa B, El Khakani MA, Therriault D (2010) Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Comp Sci Technol 70:518–524 Lebel LL, Aissa B, El Khakani MA, Therriault D (2010) Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Comp Sci Technol 70:518–524
121.
Zurück zum Zitat Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506:255–258 Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506:255–258
122.
Zurück zum Zitat Zhang H, Ding Y, Wu C, Chen Y, Zhu Y, He Y, Zhong S (2003) The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Phys B 325:224–229 Zhang H, Ding Y, Wu C, Chen Y, Zhu Y, He Y, Zhong S (2003) The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Phys B 325:224–229
123.
Zurück zum Zitat Stramel AA, Gupta MC, Lee HR, Yu J, Edwards WC (2010) Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films. Opt Lasers Eng 48:1291–1295 Stramel AA, Gupta MC, Lee HR, Yu J, Edwards WC (2010) Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films. Opt Lasers Eng 48:1291–1295
124.
Zurück zum Zitat Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72:573–580 Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72:573–580
125.
Zurück zum Zitat Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758 Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758
126.
Zurück zum Zitat Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75:1086 Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75:1086
127.
Zurück zum Zitat Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42:213001 Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42:213001
128.
Zurück zum Zitat Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegel MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107 Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegel MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107
129.
Zurück zum Zitat Masako Y, Rie K, Takeo M, Yoshimasa O, Susumu Y, Etsuro O (1995) Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition. Appl Phys Lett 67:2477–2479 Masako Y, Rie K, Takeo M, Yoshimasa O, Susumu Y, Etsuro O (1995) Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition. Appl Phys Lett 67:2477–2479
130.
Zurück zum Zitat Byon HR, Lim H, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Korean Chem Soc 28:2056–2060 Byon HR, Lim H, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Korean Chem Soc 28:2056–2060
131.
Zurück zum Zitat Chen YM, Zhang HY (2011) In: Bu JL, Jiang ZY, Jiao S (eds) The super-capacitor properties of aligned carbon nanotubes array prepared by radio frequency plasma-enhanced hot filament chemical vapor deposition. Advanced Materials Research 150–151:1560–1563 Chen YM, Zhang HY (2011) In: Bu JL, Jiang ZY, Jiao S (eds) The super-capacitor properties of aligned carbon nanotubes array prepared by radio frequency plasma-enhanced hot filament chemical vapor deposition. Advanced Materials Research 150–151:1560–1563
132.
Zurück zum Zitat Kim HD, Lee JH, Choi WS (2011) Direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated alumina powders. J Korean Phys Soc 58:112–115 Kim HD, Lee JH, Choi WS (2011) Direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated alumina powders. J Korean Phys Soc 58:112–115
133.
Zurück zum Zitat Xu Y, Dervishi E, Biris AR, Biris AS (2011) Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater Lett 65:1878–1881 Xu Y, Dervishi E, Biris AR, Biris AS (2011) Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater Lett 65:1878–1881
134.
Zurück zum Zitat Zhu YJ, Lin TJ, Liu QX, Chen YL, Zhang GF, Xiong HF, Zhang HY (2006) The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Mater Sci Eng B 127:198–202 Zhu YJ, Lin TJ, Liu QX, Chen YL, Zhang GF, Xiong HF, Zhang HY (2006) The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Mater Sci Eng B 127:198–202
135.
Zurück zum Zitat Lee O, Jung J, Doo S, Kim SS, Noh TH, Kim KI, Lim YS (2010) Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met Mater Int 16:663–667 Lee O, Jung J, Doo S, Kim SS, Noh TH, Kim KI, Lim YS (2010) Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met Mater Int 16:663–667
136.
Zurück zum Zitat Afolabi AS, Abdulkareem AS, Mhlanga SD, Iyuke SE (2011) Synthesis and purification of bimetallic catalysed carbon nanotubes in a horizontal CVD reactor. J Exp Nanosci 6:248–262 Afolabi AS, Abdulkareem AS, Mhlanga SD, Iyuke SE (2011) Synthesis and purification of bimetallic catalysed carbon nanotubes in a horizontal CVD reactor. J Exp Nanosci 6:248–262
137.
Zurück zum Zitat Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49:2725–2734 Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49:2725–2734
138.
Zurück zum Zitat Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380:496–502 Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380:496–502
139.
Zurück zum Zitat Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109:1141–1147 Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109:1141–1147
140.
Zurück zum Zitat Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383 Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383
141.
Zurück zum Zitat Fotopoulos N, Xanthakis JP (2010) A molecular level model for the nucleation of a single-wall carbon nanotube cap over a transition metal catalytic particle. Diamond Relat Mater 19:557–561 Fotopoulos N, Xanthakis JP (2010) A molecular level model for the nucleation of a single-wall carbon nanotube cap over a transition metal catalytic particle. Diamond Relat Mater 19:557–561
142.
Zurück zum Zitat Zhang DS, Shi LY, Fang JH, Dai K, Li XK (2006) Preparation and desalination performance of multiwall carbon nanotubes. Mater Chem Phys 97:415–419 Zhang DS, Shi LY, Fang JH, Dai K, Li XK (2006) Preparation and desalination performance of multiwall carbon nanotubes. Mater Chem Phys 97:415–419
143.
Zurück zum Zitat Li G (2010) Synthesis of well-aligned carbon nanotubes on the NH3 pretreatment Ni catalyst films. Russ J Phys Chem A 84:1560–1565 Li G (2010) Synthesis of well-aligned carbon nanotubes on the NH3 pretreatment Ni catalyst films. Russ J Phys Chem A 84:1560–1565
144.
Zurück zum Zitat Cui T, Lv RT, Kang FY, Hu Q, Gu JL, Wang KL, Wu DH (2010) Synthesis and enhanced field-emission of thin-walled, open-ended, and well-aligned N-doped carbon nanotubes. Nanoscale Res Lett 5:941–948 Cui T, Lv RT, Kang FY, Hu Q, Gu JL, Wang KL, Wu DH (2010) Synthesis and enhanced field-emission of thin-walled, open-ended, and well-aligned N-doped carbon nanotubes. Nanoscale Res Lett 5:941–948
145.
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451 Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451
146.
Zurück zum Zitat Yu OK, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103 Yu OK, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103
147.
Zurück zum Zitat De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8:135 De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8:135
148.
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30
149.
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706
150.
Zurück zum Zitat Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312
151.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574 Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574
152.
Zurück zum Zitat Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei S-S, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443 Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei S-S, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443
153.
Zurück zum Zitat Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614 Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614
154.
Zurück zum Zitat Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58 Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58
155.
Zurück zum Zitat Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144 Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144
156.
Zurück zum Zitat Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441 Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441
157.
Zurück zum Zitat Tao L, Lee J, Holt M, Chou H, McDonnell SJ, Ferrer DA, Babenco MG, Wallace RM, Banerjee SK, Ruoff RS, Akinwande D (2012) Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J Phys Chem C 116:24068 Tao L, Lee J, Holt M, Chou H, McDonnell SJ, Ferrer DA, Babenco MG, Wallace RM, Banerjee SK, Ruoff RS, Akinwande D (2012) Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J Phys Chem C 116:24068
158.
Zurück zum Zitat Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351 Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351
159.
Zurück zum Zitat Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W-J (2012) Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc 134:3627 Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W-J (2012) Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc 134:3627
160.
Zurück zum Zitat Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110 Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110
161.
Zurück zum Zitat Vlassiouk I, Regmi M, Fulvio R, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069 Vlassiouk I, Regmi M, Fulvio R, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069
162.
Zurück zum Zitat Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867 Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867
163.
Zurück zum Zitat Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85:1265 Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85:1265
164.
Zurück zum Zitat Nandamuri G, Roumimov S, Solanki R (2010) Remote plasma assisted growth of graphene films. Appl Phys Lett 96:154101 Nandamuri G, Roumimov S, Solanki R (2010) Remote plasma assisted growth of graphene films. Appl Phys Lett 96:154101
165.
Zurück zum Zitat Qi JL, Zheng WT, Zheng XH, Wang X, Tian HW (2011) Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl Surf Sci 257:6531 Qi JL, Zheng WT, Zheng XH, Wang X, Tian HW (2011) Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl Surf Sci 257:6531
166.
Zurück zum Zitat Kim Y, Song W, Lee SY, Jeon C, Jung W, Kim M, Park C-Y (2011) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl Phys Lett 98:263106 Kim Y, Song W, Lee SY, Jeon C, Jung W, Kim M, Park C-Y (2011) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl Phys Lett 98:263106
167.
Zurück zum Zitat Kalita G, Kayastha MS, Uchida H, Wakita K, Umeno M (2012) Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Advances 2:3225 Kalita G, Kayastha MS, Uchida H, Wakita K, Umeno M (2012) Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Advances 2:3225
168.
Zurück zum Zitat Sutter P (2009) How silicon leaves the scene. Nat Mater 8:171 Sutter P (2009) How silicon leaves the scene. Nat Mater 8:171
169.
Zurück zum Zitat Kageshima H, Hibino H, Tanabe S (2012) The physics of epitaxial graphene on SiC(0001). J Phys: Condens Matter 24:314215 Kageshima H, Hibino H, Tanabe S (2012) The physics of epitaxial graphene on SiC(0001). J Phys: Condens Matter 24:314215
170.
Zurück zum Zitat Badami DV (1962) Graphitization of α-silicon carbide. Nature 193:569 Badami DV (1962) Graphitization of α-silicon carbide. Nature 193:569
171.
Zurück zum Zitat Zhou SY, G–H G, Graf J, Fedorav AV, Spataru CD, Diehl RD, Kopelevich Y, D–H L, Louie SG, Lanzara A (2006) First direct observation of dirac Fermions in graphite. Nat Phys 2:595 Zhou SY, G–H G, Graf J, Fedorav AV, Spataru CD, Diehl RD, Kopelevich Y, D–H L, Louie SG, Lanzara A (2006) First direct observation of dirac Fermions in graphite. Nat Phys 2:595
172.
Zurück zum Zitat Ohta T, Bostwick A, McChesney JL, Seyller T, Horn K, Rotenberg E (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys Rev Lett 98:206802 Ohta T, Bostwick A, McChesney JL, Seyller T, Horn K, Rotenberg E (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys Rev Lett 98:206802
173.
Zurück zum Zitat Kageshima H, Hibino H, Yamaguchi H, Nagase M (2011) Theoretical study on epitaxial graphene growth by Si sublimation from SiC (0001) surface. Jpn J Appl Phys 50:095601 Kageshima H, Hibino H, Yamaguchi H, Nagase M (2011) Theoretical study on epitaxial graphene growth by Si sublimation from SiC (0001) surface. Jpn J Appl Phys 50:095601
174.
Zurück zum Zitat Dmitriev AN, Cherednichenko DI (2011) Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source. Semiconductors 45:1656 Dmitriev AN, Cherednichenko DI (2011) Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source. Semiconductors 45:1656
175.
Zurück zum Zitat Hibino H, Kageshima H, Maeda F, Nagase M, Kobayasi Y, Yamaguchi H (2008) Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys Rev B 77:075413 Hibino H, Kageshima H, Maeda F, Nagase M, Kobayasi Y, Yamaguchi H (2008) Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys Rev B 77:075413
176.
Zurück zum Zitat Hibino H, Tanabe S, Mizuno S, Kageshima H (2012) Growth and electronic transport properties of epitaxial graphene on SiC. J Phys D:Appl Phys 45:154008 Hibino H, Tanabe S, Mizuno S, Kageshima H (2012) Growth and electronic transport properties of epitaxial graphene on SiC. J Phys D:Appl Phys 45:154008
177.
Zurück zum Zitat Kim K, Park J, Kim C, Choi W, Seo Y, Ahn J, Park I-S (2012) Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro Nano Lett 7:1133 Kim K, Park J, Kim C, Choi W, Seo Y, Ahn J, Park I-S (2012) Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro Nano Lett 7:1133
178.
Zurück zum Zitat Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301 Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301
179.
Zurück zum Zitat Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17:3678 Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17:3678
180.
Zurück zum Zitat Israelachvili J (2011) Intermolecular and surface force, 3rd edn. Academic, Boston Israelachvili J (2011) Intermolecular and surface force, 3rd edn. Academic, Boston
181.
Zurück zum Zitat Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10564 Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10564
182.
Zurück zum Zitat Liu W, Wang JN (2011) Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem Commun 47:6888 Liu W, Wang JN (2011) Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem Commun 47:6888
183.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210 Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210
184.
Zurück zum Zitat Srivastava PK, Ghosh S (2013) Eliminating defects from graphene monolayers during chemical exfoliation. Appl Phys Lett 102:043102 Srivastava PK, Ghosh S (2013) Eliminating defects from graphene monolayers during chemical exfoliation. Appl Phys Lett 102:043102
185.
Zurück zum Zitat Schniepp HC, J–L L, McAllister MJ, Sai H, Alonso MH, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535 Schniepp HC, J–L L, McAllister MJ, Sai H, Alonso MH, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535
186.
Zurück zum Zitat McAllister MJ, Li JL, Adamson DH, Schnlepp HC, Abdalam AA, Liu J, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396 McAllister MJ, Li JL, Adamson DH, Schnlepp HC, Abdalam AA, Liu J, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396
187.
Zurück zum Zitat Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559 Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559
188.
Zurück zum Zitat Liu X, Kim H, Guo LJ (2013) Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Organ Electron 14:591 Liu X, Kim H, Guo LJ (2013) Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Organ Electron 14:591
189.
Zurück zum Zitat Park O-K, Hahm MG, Lee S, Joh HI, Na SI, Vajtai R, Lee JH, Ku B-C, Ajayan PM (2012) In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. Nano Lett 12:1789 Park O-K, Hahm MG, Lee S, Joh HI, Na SI, Vajtai R, Lee JH, Ku B-C, Ajayan PM (2012) In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. Nano Lett 12:1789
190.
Zurück zum Zitat Al-Temimy A, Riedl C, Starke U (2009) Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Appl Phys Lett 95:231907 Al-Temimy A, Riedl C, Starke U (2009) Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Appl Phys Lett 95:231907
191.
Zurück zum Zitat Hackley J, Ali D, DiPasquale J, Demaree JD, Richardson CJK (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114 Hackley J, Ali D, DiPasquale J, Demaree JD, Richardson CJK (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114
192.
Zurück zum Zitat Garcia JM, He R, Jiang MP, Yan J, Pinczuk A, Zuev YM, Kim KS, Kim P, Baldwin K, West KW, Pfeiffer LN (2010) Multilayer graphene films grown by molecular beam deposition. Solid State Commun 150:809 Garcia JM, He R, Jiang MP, Yan J, Pinczuk A, Zuev YM, Kim KS, Kim P, Baldwin K, West KW, Pfeiffer LN (2010) Multilayer graphene films grown by molecular beam deposition. Solid State Commun 150:809
193.
Zurück zum Zitat Garcia JM, Wurstbauer U, Levy A, Pfeiffer LN, Pinczuk A, Plaut AS, Wang L, Dean CR, Buizza R, Van Der Zande AM, Hone J, Watanabe K, Taniguchi T (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975 Garcia JM, Wurstbauer U, Levy A, Pfeiffer LN, Pinczuk A, Plaut AS, Wang L, Dean CR, Buizza R, Van Der Zande AM, Hone J, Watanabe K, Taniguchi T (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975
194.
Zurück zum Zitat Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car P (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101 Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car P (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101
195.
Zurück zum Zitat Ajayan PM, Yakobson BI (2006) Oxygen breaks into carbon world. Nature 441:818 Ajayan PM, Yakobson BI (2006) Oxygen breaks into carbon world. Nature 441:818
196.
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872 Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872
197.
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877
198.
Zurück zum Zitat Zhuang N, Liu C, Jia L, Wei L, Cai J, Guo Y, Zhang Y, Hu X, Chen J, Chen X, Tang Y (2013) Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology 24:325604 Zhuang N, Liu C, Jia L, Wei L, Cai J, Guo Y, Zhang Y, Hu X, Chen J, Chen X, Tang Y (2013) Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology 24:325604
199.
Zurück zum Zitat Iwai H (2009) Roadmap for 22 nm and beyond. Microelectron Eng 86:1520–1528 Iwai H (2009) Roadmap for 22 nm and beyond. Microelectron Eng 86:1520–1528
200.
Zurück zum Zitat Wang C, Takei K, Takahashi T, Javey A (2013) Carbon nanotube electronics–moving forward. Chem Soc Rev 42:2592 Wang C, Takei K, Takahashi T, Javey A (2013) Carbon nanotube electronics–moving forward. Chem Soc Rev 42:2592
201.
Zurück zum Zitat Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732 Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732
202.
Zurück zum Zitat Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654–657 Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654–657
203.
Zurück zum Zitat Bradley K, Gabriel JCP, Star A, Gruner G (2003) Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett 83:3821 Bradley K, Gabriel JCP, Star A, Gruner G (2003) Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett 83:3821
204.
Zurück zum Zitat Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329 Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329
205.
Zurück zum Zitat Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7:3508 Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7:3508
206.
Zurück zum Zitat Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub – 10 nm carbon nanotube transistor. Nano Lett 12:758 Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub – 10 nm carbon nanotube transistor. Nano Lett 12:758
207.
Zurück zum Zitat Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29 Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29
208.
Zurück zum Zitat Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791 Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791
209.
Zurück zum Zitat Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High-mobility carbon-nanotube thin film transistors on a polymeric substrate. Appl Phys Lett 86:033105 Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High-mobility carbon-nanotube thin film transistors on a polymeric substrate. Appl Phys Lett 86:033105
210.
Zurück zum Zitat Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156 Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156
211.
Zurück zum Zitat McCarthy MA, Liu B, Donoghue EP, Kravchenko I, Kim DY, So F, Rinzler AG (2011) Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332:570 McCarthy MA, Liu B, Donoghue EP, Kravchenko I, Kim DY, So F, Rinzler AG (2011) Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332:570
212.
Zurück zum Zitat van der Veen MH, Vereecke B, Sugiura M, Kashiwagi Y, Ke X, Cott DJ, Vanpaemel JKM, Vereecken PM, Gendt SD, Huyghebaert C, Tökei Z (2012) Electrical and structural characterization of 150 nm CNT contacts with Cu damascene top metallization. In: Paper presented at the 2012 I.E. international interconnect technology conference (IITC), San Jose, 4 to 6 June 2012 van der Veen MH, Vereecke B, Sugiura M, Kashiwagi Y, Ke X, Cott DJ, Vanpaemel JKM, Vereecken PM, Gendt SD, Huyghebaert C, Tökei Z (2012) Electrical and structural characterization of 150 nm CNT contacts with Cu damascene top metallization. In: Paper presented at the 2012 I.E. international interconnect technology conference (IITC), San Jose, 4 to 6 June 2012
213.
Zurück zum Zitat Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tománek D (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269:1550–1553 Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tománek D (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269:1550–1553
214.
Zurück zum Zitat Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its applications to electron sources. Carbon 38:169–182 Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its applications to electron sources. Carbon 38:169–182
215.
Zurück zum Zitat Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171 Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171
216.
Zurück zum Zitat Bower C, Zhu W, Shalom D, Lopez D, Chen LH, Gammel PL, Jin S (2002) On-chip vacuum microtriode using carbon nanotube field emitters. Appl Phys Lett 80:3820 Bower C, Zhu W, Shalom D, Lopez D, Chen LH, Gammel PL, Jin S (2002) On-chip vacuum microtriode using carbon nanotube field emitters. Appl Phys Lett 80:3820
217.
Zurück zum Zitat Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JH, Choi YS, Park NS, Lee NS, Kim JM (2001) Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl Phys Lett 1547:78 Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JH, Choi YS, Park NS, Lee NS, Kim JM (2001) Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl Phys Lett 1547:78
218.
Zurück zum Zitat Choi WB, Lee YH, Chung DS, Lee NS, Kim JM (2000) Field emission from 4.5˝ single-walled and multi-walled carbon nanotube films. J Vac Sci Tech B 18(2):1054–1058 Choi WB, Lee YH, Chung DS, Lee NS, Kim JM (2000) Field emission from 4.5˝ single-walled and multi-walled carbon nanotube films. J Vac Sci Tech B 18(2):1054–1058
219.
Zurück zum Zitat Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. CR Phys 4:1021 Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. CR Phys 4:1021
220.
Zurück zum Zitat Bonard JM, Salvetat JP, Stockli T, Deheer WA, Forro L, Chatelain A (1998) Field emission from single-wall carbon nanotube film. Appl Phys Lett 73:918–920 Bonard JM, Salvetat JP, Stockli T, Deheer WA, Forro L, Chatelain A (1998) Field emission from single-wall carbon nanotube film. Appl Phys Lett 73:918–920
221.
Zurück zum Zitat Seko K, Kinoshita J, Saito Y (2005) In situ transmission electron microscopy of field-emitting bundles of double wall carbon nanotubes. Jpn J Appl Phys 44:L743–L745 Seko K, Kinoshita J, Saito Y (2005) In situ transmission electron microscopy of field-emitting bundles of double wall carbon nanotubes. Jpn J Appl Phys 44:L743–L745
222.
Zurück zum Zitat Son Y-W, Oh S, Ihm J, Han S (2005) Field emission properties of double-wall carbon nanotubes. Nanotechnol 16:125–128 Son Y-W, Oh S, Ihm J, Han S (2005) Field emission properties of double-wall carbon nanotubes. Nanotechnol 16:125–128
223.
Zurück zum Zitat Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S (2006) Synthesis of single and double walled carbon nanotubes forests on conducting metal foils. J Am Chem Soc 128:13338–13339 Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S (2006) Synthesis of single and double walled carbon nanotubes forests on conducting metal foils. J Am Chem Soc 128:13338–13339
224.
Zurück zum Zitat Charlier J-C, Terrones M, Baxendale M, Meunier V, Zacharia T, Ru-pesinghe NL, Hsu WK, Grobert N, Terrones H, Amaratunga GAJ (2002) Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett 2:1191 Charlier J-C, Terrones M, Baxendale M, Meunier V, Zacharia T, Ru-pesinghe NL, Hsu WK, Grobert N, Terrones H, Amaratunga GAJ (2002) Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett 2:1191
225.
Zurück zum Zitat Golberg D, Dorozhkin PS, Bando Y, Dong ZC, Tang CC, Uemura Y, Grobert N, Reyes-Reyes M, Terrones H, Terrones M (2003) Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1). Appl Phys A Mater 76:499 Golberg D, Dorozhkin PS, Bando Y, Dong ZC, Tang CC, Uemura Y, Grobert N, Reyes-Reyes M, Terrones H, Terrones M (2003) Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1). Appl Phys A Mater 76:499
226.
Zurück zum Zitat Doytcheva M, Kaiser M, Reyes-Reyes M, Terrones M, de Jonge N (2004) Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem Phys Lett 396:126 Doytcheva M, Kaiser M, Reyes-Reyes M, Terrones M, de Jonge N (2004) Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem Phys Lett 396:126
227.
Zurück zum Zitat Lahiri I, Seelaboyina R, Hwang JY, Banerjee R, Choi W (2010) Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48:1531–1538 Lahiri I, Seelaboyina R, Hwang JY, Banerjee R, Choi W (2010) Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48:1531–1538
228.
Zurück zum Zitat Seelaboyina R, Huang J, Choi WB (2006) Enhanced field emission of thin-multiwall carbon nanotubes by electron multiplication from microchannel plate. Appl Phys Lett 88:194104 Seelaboyina R, Huang J, Choi WB (2006) Enhanced field emission of thin-multiwall carbon nanotubes by electron multiplication from microchannel plate. Appl Phys Lett 88:194104
229.
Zurück zum Zitat Seelaboyina R, Bodepalli S, Noh K, Jeon M, Choi W (2008) Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 19:065605 Seelaboyina R, Bodepalli S, Noh K, Jeon M, Choi W (2008) Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 19:065605
230.
Zurück zum Zitat Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130 Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130
231.
Zurück zum Zitat Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533 Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533
232.
Zurück zum Zitat Verma VP, Das S, Lahiri I, Choi W (2010) Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl Phys Lett 96:203108 Verma VP, Das S, Lahiri I, Choi W (2010) Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl Phys Lett 96:203108
233.
Zurück zum Zitat Lahiri I, Oh SW, Hwang JY, Cho S, Sun YK, Banerjee R, Choi W (2010) High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano 4(6):3440–3446 Lahiri I, Oh SW, Hwang JY, Cho S, Sun YK, Banerjee R, Choi W (2010) High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano 4(6):3440–3446
234.
Zurück zum Zitat Lahiri I, Das S, Kang C, Choi W (2011) Application of carbon nanostructures – energy to electronics. JOM 63:70 Lahiri I, Das S, Kang C, Choi W (2011) Application of carbon nanostructures – energy to electronics. JOM 63:70
235.
Zurück zum Zitat Leroux F, Metenier K, Gautier S, Frackowiak E, Bonnamy S, Beguin F (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nano-tubes. J Power Sources 81:317–322 Leroux F, Metenier K, Gautier S, Frackowiak E, Bonnamy S, Beguin F (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nano-tubes. J Power Sources 81:317–322
236.
Zurück zum Zitat Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852 Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852
237.
Zurück zum Zitat Sato M, Noguchi A, Demachi N, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558 Sato M, Noguchi A, Demachi N, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558
238.
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Nishimura K, Matsushita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs) basic properties and battery application. Carbon 39:1287–1297 Endo M, Kim YA, Hayashi T, Nishimura K, Matsushita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs) basic properties and battery application. Carbon 39:1287–1297
239.
Zurück zum Zitat An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392 An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392
240.
Zurück zum Zitat Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawab Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 2004:840–841 Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawab Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 2004:840–841
241.
Zurück zum Zitat Goff AL, Artero V, Jousselme B, Tran PD, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal -free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387 Goff AL, Artero V, Jousselme B, Tran PD, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal -free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387
242.
Zurück zum Zitat Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or B-doped carbon nanotubes. Adv Mater 23:629 Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or B-doped carbon nanotubes. Adv Mater 23:629
243.
Zurück zum Zitat Xu ZH, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotubes effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118 Xu ZH, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotubes effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118
244.
Zurück zum Zitat Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron – hole pair generation in carbon nanotube photodiodes. Science 325:1367 Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron – hole pair generation in carbon nanotube photodiodes. Science 325:1367
245.
Zurück zum Zitat Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of car bon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851 Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of car bon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851
246.
Zurück zum Zitat Bianco A, Kostarelos K, Partido CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577 Bianco A, Kostarelos K, Partido CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577
247.
Zurück zum Zitat Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605 Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605
248.
Zurück zum Zitat Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma T-J, Oralkan O, Cheng Z (2008) Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat Nanotech 3:557–562 Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma T-J, Oralkan O, Cheng Z (2008) Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat Nanotech 3:557–562
249.
Zurück zum Zitat Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590 Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590
250.
Zurück zum Zitat Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103:18882–18886 Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103:18882–18886
251.
Zurück zum Zitat Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799 Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799
252.
Zurück zum Zitat Kam NWS, Liu Z, Dai HJ (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493 Kam NWS, Liu Z, Dai HJ (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493
253.
Zurück zum Zitat Roy S, Vedala H, Prasad V, Choi W (2006) Vertically aligned multiwall carbon nanotube bioprobes on silicon platform for cholesterol detection. Nanotechnology 17:S14–S18 Roy S, Vedala H, Prasad V, Choi W (2006) Vertically aligned multiwall carbon nanotube bioprobes on silicon platform for cholesterol detection. Nanotechnology 17:S14–S18
254.
Zurück zum Zitat Hong SY, Tobias G, Jamal KTA, Ballesteros B, Boucetta HA, Perez SL, Nellist PD, Sim RB, Finucane C, Mather SJ, Green ML, Kostarelos K, Davis BG (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485 Hong SY, Tobias G, Jamal KTA, Ballesteros B, Boucetta HA, Perez SL, Nellist PD, Sim RB, Finucane C, Mather SJ, Green ML, Kostarelos K, Davis BG (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485
255.
Zurück zum Zitat Liu Z, Sun X, Ratchford NN, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56 Liu Z, Sun X, Ratchford NN, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56
256.
Zurück zum Zitat Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182 Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182
257.
Zurück zum Zitat Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Method 2:449–454 Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Method 2:449–454
258.
Zurück zum Zitat Roy S, Vedala H, Roy A, Kim D, Doud M, Mathee K, Shin H, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett 8:26–30 Roy S, Vedala H, Roy A, Kim D, Doud M, Mathee K, Shin H, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett 8:26–30
259.
Zurück zum Zitat Vedala H, Roy S, Doud M, Mathee K, Choi W (2008) The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes. Nanotechnology 19:265704 Vedala H, Roy S, Doud M, Mathee K, Choi W (2008) The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes. Nanotechnology 19:265704
260.
Zurück zum Zitat Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654–659 Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654–659
261.
Zurück zum Zitat Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748 Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748
262.
Zurück zum Zitat Liang GC, Neophytou N, Nikonov DE, Lund-strom MS (2007) Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans Electron Dev 54:677 Liang GC, Neophytou N, Nikonov DE, Lund-strom MS (2007) Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans Electron Dev 54:677
263.
Zurück zum Zitat Chen Z, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Physica E 40:228 Chen Z, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Physica E 40:228
264.
Zurück zum Zitat Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 88:142102 Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 88:142102
265.
Zurück zum Zitat Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951 Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951
266.
Zurück zum Zitat Bai J, Duan X, Huang Y (2009) Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nanoletters 9:2083 Bai J, Duan X, Huang Y (2009) Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nanoletters 9:2083
267.
Zurück zum Zitat Tseng F, Unluer D, Holcomb K, Stan MR, Ghosh AW (2009) Diluted chirality dependence in edge rough graphene nanoribbons field-effect transistors. Appl Phys Lett 94:223112 Tseng F, Unluer D, Holcomb K, Stan MR, Ghosh AW (2009) Diluted chirality dependence in edge rough graphene nanoribbons field-effect transistors. Appl Phys Lett 94:223112
268.
Zurück zum Zitat Farmer DB, Mojarad RG, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P (2009) Chemical doping and electron–hole conduction asymmetry in graphene devices. Nanoletters 9:388 Farmer DB, Mojarad RG, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P (2009) Chemical doping and electron–hole conduction asymmetry in graphene devices. Nanoletters 9:388
269.
Zurück zum Zitat Ouyang Y, Wang X, Dai H, Guo J (2008) Carrier scattering in graphene nanoribbon field-effect transistors. Appl Phys Lett 92:243124 Ouyang Y, Wang X, Dai H, Guo J (2008) Carrier scattering in graphene nanoribbon field-effect transistors. Appl Phys Lett 92:243124
270.
Zurück zum Zitat Ryzhii V, Ryzhii M, Otsuji T (2008) Thermionic and tunneling transport mechanisms in graphene field-effect transistors. Phys Stat Sol (a) 205(1527) Ryzhii V, Ryzhii M, Otsuji T (2008) Thermionic and tunneling transport mechanisms in graphene field-effect transistors. Phys Stat Sol (a) 205(1527)
271.
Zurück zum Zitat Ryzhii V, Ryzhii M, Satou A, Otsuji T (2008) Current–voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510 Ryzhii V, Ryzhii M, Satou A, Otsuji T (2008) Current–voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510
272.
Zurück zum Zitat Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nanoletters 8:323 Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nanoletters 8:323
273.
Zurück zum Zitat Han T-H, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW (2012) Extremely efficient flexible organic light emitting diodes with modified graphene anode. Nat Photonics 6:105–110 Han T-H, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW (2012) Extremely efficient flexible organic light emitting diodes with modified graphene anode. Nat Photonics 6:105–110
274.
Zurück zum Zitat Gomez DAL, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865 Gomez DAL, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865
275.
Zurück zum Zitat Li S, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-process-able graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169 Li S, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-process-able graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169
276.
Zurück zum Zitat Liao L, Lin Y-C, Duan X (2010) High speed graphene transistors with a self-aligned nanowire gate. Nature 467:305 Liao L, Lin Y-C, Duan X (2010) High speed graphene transistors with a self-aligned nanowire gate. Nature 467:305
277.
Zurück zum Zitat Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett 30:650–652 Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett 30:650–652
278.
Zurück zum Zitat Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662 Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662
279.
Zurück zum Zitat Szafranek BN, Fiori G, Schall D, Neumaier D, Kurz H (2012) Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett 12:1324 Szafranek BN, Fiori G, Schall D, Neumaier D, Kurz H (2012) Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett 12:1324
280.
Zurück zum Zitat Rangel NL, Gimenez A, Sinitskii A, Seminario JM (2011) Graphene signal mixer for sensing applications. J Phys Chem C 115(24):12128–12134 Rangel NL, Gimenez A, Sinitskii A, Seminario JM (2011) Graphene signal mixer for sensing applications. J Phys Chem C 115(24):12128–12134
281.
Zurück zum Zitat Wang H, Nezich D, Kong J, Palacios T (2009) Graphene frequency multipliers. IEEE Electron Device Lett 30:547–549 Wang H, Nezich D, Kong J, Palacios T (2009) Graphene frequency multipliers. IEEE Electron Device Lett 30:547–549
282.
Zurück zum Zitat Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L-M (2010) A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett 96:173104 Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L-M (2010) A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett 96:173104
283.
Zurück zum Zitat Milaninia KM, Baldo MA, Reina A, Kong J (2009) All graphene electromechanical switch fabricated by chemical vapor deposition. Appl Phys Lett 95:183105 Milaninia KM, Baldo MA, Reina A, Kong J (2009) All graphene electromechanical switch fabricated by chemical vapor deposition. Appl Phys Lett 95:183105
284.
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652
285.
Zurück zum Zitat Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:201 Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:201
286.
Zurück zum Zitat Sundaram RS, Navarro CG, Balasubramaniam K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050 Sundaram RS, Navarro CG, Balasubramaniam K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050
287.
Zurück zum Zitat Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832 Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832
288.
Zurück zum Zitat Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112:13442–13446 Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112:13442–13446
289.
Zurück zum Zitat Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378 Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378
290.
Zurück zum Zitat Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853 Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853
291.
Zurück zum Zitat Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive de-termination of cadmium. Electrochem Commun 11(1085) Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive de-termination of cadmium. Electrochem Commun 11(1085)
292.
Zurück zum Zitat Bae S-H, Lee Y, Sharma BK, Lee HJ, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242 Bae S-H, Lee Y, Sharma BK, Lee HJ, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242
293.
Zurück zum Zitat Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song Y, Hong BH, Ahn J-H (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493 Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song Y, Hong BH, Ahn J-H (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493
294.
Zurück zum Zitat Fu X-W, Liao Z-M, Zhou JX, Zhou YB, Wu HC, Zhang R (2011) Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys Lett 99(21):213107 Fu X-W, Liao Z-M, Zhou JX, Zhou YB, Wu HC, Zhang R (2011) Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys Lett 99(21):213107
295.
Zurück zum Zitat Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5(5):3645–3650 Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5(5):3645–3650
296.
Zurück zum Zitat Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Palestri P, Palestri P, Ostling M, Lemme MC (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242 Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Palestri P, Palestri P, Ostling M, Lemme MC (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242
297.
Zurück zum Zitat Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuators A 136(1):51–61 Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuators A 136(1):51–61
298.
Zurück zum Zitat Kalvesten E, Smith L, Tenerz L, Stemme G (1998) The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings 11th Annu. Int. Workshop on Micro Electro Mech Syst 574–579 Kalvesten E, Smith L, Tenerz L, Stemme G (1998) The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings 11th Annu. Int. Workshop on Micro Electro Mech Syst 574–579
299.
Zurück zum Zitat Lee SW, Lee SS, Yang EH (2009) A study on field emission characteristics of planar graphene layers obtained from a highly oriented pyrolyzed graphite block. Nanoscale Res Lett 4:1218–1221 Lee SW, Lee SS, Yang EH (2009) A study on field emission characteristics of planar graphene layers obtained from a highly oriented pyrolyzed graphite block. Nanoscale Res Lett 4:1218–1221
300.
Zurück zum Zitat Koh ATT, Foong YM, Pan L, Sun Z, Chua DHC (2012) Effective large-area free-standing graphene field emitters by electrophoretic deposition. Appl Phys Lett 101:183107 Koh ATT, Foong YM, Pan L, Sun Z, Chua DHC (2012) Effective large-area free-standing graphene field emitters by electrophoretic deposition. Appl Phys Lett 101:183107
301.
Zurück zum Zitat Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Haesendonck CV (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301 Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Haesendonck CV (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301
302.
Zurück zum Zitat Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90 Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90
303.
Zurück zum Zitat Eda G, Unalan HE, Rupesinghe N, Amartunga GAJ, Chhowalla M (2008) Field emission from graphene based composite films. Appl Phys Lett 93:233502 Eda G, Unalan HE, Rupesinghe N, Amartunga GAJ, Chhowalla M (2008) Field emission from graphene based composite films. Appl Phys Lett 93:233502
304.
Zurück zum Zitat Wu ZS, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng HM (2009) Field emission from single layer graphene films prepared by electrophoretic deposition. Adv Mater 21:1756 Wu ZS, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng HM (2009) Field emission from single layer graphene films prepared by electrophoretic deposition. Adv Mater 21:1756
305.
Zurück zum Zitat Lahiri I, Verma VP, Choi W (2011) An all-graphene based transparent and flexible field emission device. Carbon 49(5):1614–1619 Lahiri I, Verma VP, Choi W (2011) An all-graphene based transparent and flexible field emission device. Carbon 49(5):1614–1619
306.
Zurück zum Zitat Watcharotone S, Ruoff RS, Read FH (2008) Possibilities for graphene for field emission: modeling studies using the BEM. Phys Procedia 1:71 Watcharotone S, Ruoff RS, Read FH (2008) Possibilities for graphene for field emission: modeling studies using the BEM. Phys Procedia 1:71
307.
Zurück zum Zitat Babenko AY, Dideykin AT, Eidelman ED (2009) Graphene ladder: a model of field emission center on the surface of loose nanocarbon materials. Phys Solid State 51:435 Babenko AY, Dideykin AT, Eidelman ED (2009) Graphene ladder: a model of field emission center on the surface of loose nanocarbon materials. Phys Solid State 51:435
308.
Zurück zum Zitat Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277 Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277
309.
Zurück zum Zitat Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yud Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2:6792–6799 Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yud Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2:6792–6799
310.
Zurück zum Zitat Paek S-M, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three dimensionally delaminated flexible structure. Nano Lett 9:72 Paek S-M, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three dimensionally delaminated flexible structure. Nano Lett 9:72
311.
Zurück zum Zitat Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Jiu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907 Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Jiu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907
312.
Zurück zum Zitat Xie J, Song W, Zheng Y, Liu S, Zhu T, Cao G, Zhao X (2011) Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. Int J Smart Nano Mat 2(4):261–271 Xie J, Song W, Zheng Y, Liu S, Zhu T, Cao G, Zhao X (2011) Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. Int J Smart Nano Mat 2(4):261–271
313.
Zurück zum Zitat Xiao JD, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11(11):5071–5078 Xiao JD, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11(11):5071–5078
314.
Zurück zum Zitat Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845 Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845
315.
Zurück zum Zitat Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995 Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995
316.
Zurück zum Zitat Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang CM, Lin YH, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954 Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang CM, Lin YH, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954
317.
Zurück zum Zitat Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114 Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114
318.
Zurück zum Zitat Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302–263304 Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302–263304
319.
Zurück zum Zitat Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305–233307 Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305–233307
320.
Zurück zum Zitat Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Comm 10:1555–1558 Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Comm 10:1555–1558
321.
Zurück zum Zitat Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22:2743–2748 Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22:2743–2748
322.
Zurück zum Zitat Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G (2010) High-oerformance single CdS nanowire (nanobelt) schottky junction solar cells with Au/Graphene Schottky electrodes. ACS Appl Mater Interfaces 2:3406–3410 Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G (2010) High-oerformance single CdS nanowire (nanobelt) schottky junction solar cells with Au/Graphene Schottky electrodes. ACS Appl Mater Interfaces 2:3406–3410
323.
Zurück zum Zitat Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344 Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344
324.
Zurück zum Zitat Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14 Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14
325.
Zurück zum Zitat Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987 Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987
326.
Zurück zum Zitat Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew Chem Int Ed 49:3653–3656 Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew Chem Int Ed 49:3653–3656
327.
Zurück zum Zitat Das S, Sudhagar P, Verma V, Song D, Ito E, Lee SY, Kang YS, Choi W (2011) Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater 21:3729–3736 Das S, Sudhagar P, Verma V, Song D, Ito E, Lee SY, Kang YS, Choi W (2011) Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater 21:3729–3736
328.
Zurück zum Zitat Das S, Sudhagar P, Nagarajan S, Ito E, Lee SY, Kang YS, Choi W (2012) Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 50:4815–4821 Das S, Sudhagar P, Nagarajan S, Ito E, Lee SY, Kang YS, Choi W (2012) Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 50:4815–4821
329.
Zurück zum Zitat Das S, Sudhagar P, Ito E, Lee DY, Nagarajan S, Lee SY, Kang YS, Choi W (2012) Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J Mater Chem 22:20490–20497 Das S, Sudhagar P, Ito E, Lee DY, Nagarajan S, Lee SY, Kang YS, Choi W (2012) Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J Mater Chem 22:20490–20497
330.
Zurück zum Zitat Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101 Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101
331.
Zurück zum Zitat Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two dimensional hydrocarbon. Phys Rev B 75:153401 Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two dimensional hydrocarbon. Phys Rev B 75:153401
333.
Zurück zum Zitat Ao ZM, Peeters FM (2010) High-capacity hydrogen storage in Al-adsorbed graphene. Phys Rev B 81:205406 Ao ZM, Peeters FM (2010) High-capacity hydrogen storage in Al-adsorbed graphene. Phys Rev B 81:205406
334.
Zurück zum Zitat Beheshti E, Nojeh A, Servati PA (2011) A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 49:1561–1567 Beheshti E, Nojeh A, Servati PA (2011) A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 49:1561–1567
335.
Zurück zum Zitat Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L (2009) Atomic hydrogen adsorbate structures on graphene. J Am Chem Soc 131:8744–8745 Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L (2009) Atomic hydrogen adsorbate structures on graphene. J Am Chem Soc 131:8744–8745
336.
Zurück zum Zitat Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117:11506–11513 Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117:11506–11513
337.
Zurück zum Zitat Tozzini V, Pellegrini V (2011) Reversible hydrogen storage by controlled Buckling of graphene layers. J Phys Chem C 115:25523–25528 Tozzini V, Pellegrini V (2011) Reversible hydrogen storage by controlled Buckling of graphene layers. J Phys Chem C 115:25523–25528
338.
Zurück zum Zitat Boukhvalov DW, Katsnelson MI (2009) Enhancement of chemical activity in corrugated graphene. J Phys Chem C 113:14176–14178 Boukhvalov DW, Katsnelson MI (2009) Enhancement of chemical activity in corrugated graphene. J Phys Chem C 113:14176–14178
339.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282
340.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240 Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240
341.
Zurück zum Zitat Chen T, Zeng B, Liu JL, Dong JH, Liu XQ, Wu Z, Yang XZ, Li ZM (2009) High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. J Phys: Conf Ser 188:012051 Chen T, Zeng B, Liu JL, Dong JH, Liu XQ, Wu Z, Yang XZ, Li ZM (2009) High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. J Phys: Conf Ser 188:012051
342.
Zurück zum Zitat Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842 Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842
343.
Zurück zum Zitat Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181 Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181
344.
Zurück zum Zitat Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide – magnetic nanoparticle composite. J Phys Chem C 114:1498–1503 Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide – magnetic nanoparticle composite. J Phys Chem C 114:1498–1503
345.
Zurück zum Zitat Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Yang H, Gu C, Sun L (2010) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132:944–946 Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Yang H, Gu C, Sun L (2010) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132:944–946
346.
Zurück zum Zitat Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J (2011) Selective deposition of CdSe nanoparticles on reduced graphene oxide to understand photoinduced charge transfer in hybrid nanostructures. ACS Appl Mater Interfaces 3:2703–2709 Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J (2011) Selective deposition of CdSe nanoparticles on reduced graphene oxide to understand photoinduced charge transfer in hybrid nanostructures. ACS Appl Mater Interfaces 3:2703–2709
347.
Zurück zum Zitat Meng X, Geng D, Liu J, Banis MN, Zhang Y, Li R, Sun X (2010) Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C 114:18330–18337 Meng X, Geng D, Liu J, Banis MN, Zhang Y, Li R, Sun X (2010) Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C 114:18330–18337
348.
Zurück zum Zitat Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4 – graphene hybrid as a high-capacity anode material for lithium Ion batteries. J Am Chem Soc 132:13978–13980 Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4 – graphene hybrid as a high-capacity anode material for lithium Ion batteries. J Am Chem Soc 132:13978–13980
349.
Zurück zum Zitat Yang S, Feng X, Ivanovici S, Mullen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411 Yang S, Feng X, Ivanovici S, Mullen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411
350.
Zurück zum Zitat Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide – graphene nanocomposites for electrochemical energy storage. ACS Nano 4:1587–1595 Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide – graphene nanocomposites for electrochemical energy storage. ACS Nano 4:1587–1595
351.
Zurück zum Zitat Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970 Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970
352.
Zurück zum Zitat Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787 Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787
353.
Zurück zum Zitat Zhang L-S, Liang X-Q, Song W-G, Wu Z-Y (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059 Zhang L-S, Liang X-Q, Song W-G, Wu Z-Y (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059
354.
Zurück zum Zitat Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer – heterojunction photovoltaic devices. ACS Nano 4:5633–5640 Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer – heterojunction photovoltaic devices. ACS Nano 4:5633–5640
Metadaten
Titel
Carbon Nanomaterials: A Review
verfasst von
Nitin Choudhary
Sookhyun Hwang
Wonbong Choi
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31107-9_37

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.