Skip to main content

2016 | OriginalPaper | Buchkapitel

Secure Obfuscation in a Weak Multilinear Map Model

verfasst von : Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, Mark Zhandry

Erschienen in: Theory of Cryptography

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All known candidate indistinguishability obfuscation (iO) schemes rely on candidate multilinear maps. Until recently, the strongest proofs of security available for iO candidates were in a generic model that only allows “honest” use of the multilinear map. Most notably, in this model the zero-test procedure only reveals whether an encoded element is 0, and nothing more.
However, this model is inadequate: there have been several attacks on multilinear maps that exploit extra information revealed by the zero-test procedure. In particular, Miles, Sahai and Zhandry (Crypto’16) recently gave a polynomial-time attack on several iO candidates when instantiated with the multilinear maps of Garg, Gentry, and Halevi (Eurocrypt’13), and also proposed a new “weak multilinear map model” that captures all known polynomial-time attacks on GGH13.
In this work, we give a new iO candidate which can be seen as a small modification or generalization of the original candidate of Garg, Gentry, Halevi, Raykova, Sahai, and Waters (FOCS’13). We prove its security in the weak multilinear map model, thus giving the first iO candidate that is provably secure against all known polynomial-time attacks on GGH13. The proof of security relies on a new assumption about the hardness of computing annihilating polynomials, and we show that this assumption is implied by the existence of pseudorandom functions in NC\(^1\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For simplicity we abuse notations of branching programs, in that it outputs a ring element instead of a bit. It is straightforward to embed multiple branching programs into one to achieve this effect.
 
2
Here and for the remainder of the paper, we use \(z_i\) rather than \(r_i\) to denote the randomization values in GGH13 encodings, to avoid conflicting with the random matrices R chosen by the obfuscator. We will not need to work with the GGH13 level denominators, which were previously denoted by \(z_i\).
 
3
Note that this corresponds to finding a non-trivial element in the ideal \(\langle g \rangle \).
 
4
These can be constructed from any NC\(^1\) formula with \(m = \mathsf {poly}(n)\) and \(w = 5\) by Barrington’s theorem [Bar86]. Obfuscating NC\(^1\) formulas is sufficient to obfuscate all polynomial-size circuits [GGH+13b, BR14, App14].
 
5
For the analysis that we borrow from [BGK+14, BMSZ16], namely Lemma 1, we will not need the strong straddling set systems due to [MSW14].
 
Literatur
[AGIS14]
Zurück zum Zitat Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 646–658 (2014) Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 646–658 (2014)
[AJN+16]
Zurück zum Zitat Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_17 CrossRef Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53008-5_​17 CrossRef
[App14]
Zurück zum Zitat Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_9 Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-45608-8_​9
[Bar86]
Zurück zum Zitat Mix Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. In: STOC (1986) Mix Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. In: STOC (1986)
[BGH+15]
Zurück zum Zitat Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845 (2015). http://eprint.iacr.org/ Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845 (2015). http://​eprint.​iacr.​org/​
[BGI+01]
Zurück zum Zitat Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_1 CrossRef Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.​1007/​3-540-44647-8_​1 CrossRef
[BGI+12]
Zurück zum Zitat Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATH Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATH
[BGJ+15]
Zurück zum Zitat Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. Cryptology ePrint Archive, Report 2015/514 (2015). http://eprint.iacr.org/ Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. Cryptology ePrint Archive, Report 2015/514 (2015). http://​eprint.​iacr.​org/​
[BGK+14]
Zurück zum Zitat Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_13 CrossRef Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​13 CrossRef
[BLR+15]
Zurück zum Zitat Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6_19 Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46803-6_​19
[BMSZ16]
Zurück zum Zitat Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_27 CrossRef Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49896-5_​27 CrossRef
[BR14]
Zurück zum Zitat Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_1 CrossRef Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-54242-8_​1 CrossRef
[BWZ14]
[CGH+15]
Zurück zum Zitat Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_12 CrossRef Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​12 CrossRef
[CHL+15]
Zurück zum Zitat Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_1 Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46800-5_​1
[Cle88]
Zurück zum Zitat Cleve, R.: Computing algebraic formulas with a constant number of registers. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 254–257. ACM, New York (1988) Cleve, R.: Computing algebraic formulas with a constant number of registers. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 254–257. ACM, New York (1988)
[CLR15]
[CLT13]
Zurück zum Zitat Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_26 CrossRef Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​26 CrossRef
[CLT15]
[GGH13a]
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_1 CrossRef Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-38348-9_​1 CrossRef
[GGH+13b]
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)
[GGH15]
[GMS16]
Zurück zum Zitat Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities of multilinear maps. Cryptology ePrint Archive, Report 2016/390 (2016). http://eprint.iacr.org/ Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities of multilinear maps. Cryptology ePrint Archive, Report 2016/390 (2016). http://​eprint.​iacr.​org/​
[Hal15]
Zurück zum Zitat Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology ePrint Archive, 2015:866 (2015) Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology ePrint Archive, 2015:866 (2015)
[HJ15]
Zurück zum Zitat Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint Archive, 2015:301 (2015) Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint Archive, 2015:301 (2015)
[Kil88]
Zurück zum Zitat Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988) Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
[MF15]
[MSW14]
Zurück zum Zitat Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks. IACR Cryptology ePrint Archive, 2014:878 (2014) Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks. IACR Cryptology ePrint Archive, 2014:878 (2014)
[MSZ16a]
Zurück zum Zitat Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_22 CrossRef Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53008-5_​22 CrossRef
[MSZ16b]
Zurück zum Zitat Miles, E., Sahai, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model: a simple construction secure against all known attacks. Cryptology ePrint Archive, Report 2016/588 (2016). http://eprint.iacr.org/2016/588 Miles, E., Sahai, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model: a simple construction secure against all known attacks. Cryptology ePrint Archive, Report 2016/588 (2016). http://​eprint.​iacr.​org/​2016/​588
[PST14]
Zurück zum Zitat Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_28 CrossRef Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-44371-2_​28 CrossRef
Metadaten
Titel
Secure Obfuscation in a Weak Multilinear Map Model
verfasst von
Sanjam Garg
Eric Miles
Pratyay Mukherjee
Amit Sahai
Akshayaram Srinivasan
Mark Zhandry
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53644-5_10

Premium Partner