Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Basic Physics of Electrical Discharges

verfasst von : Vernon Cooray

Erschienen in: An Introduction to Lightning

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main constituents of air in the Earth’s atmosphere are nitrogen (78 %), oxygen (20 %), noble gases (1 %), carbon dioxide (0.97 %), water vapor (0.03 %), and other trace gases. Because of the ionization of air by the high-energy radiation of cosmic rays and radioactive gases generated from the Earth, each cubic centimeter of air at ground level contains approximately ten free electrons. In general, air is a good insulator, and it can retain its insulating properties until the applied electric field exceeds approximately 3 × 106 V/m at standard atmospheric conditions (i.e., T = 293 K and P = 1 atm). When the background electric field exceeds this critical value, air is converted very rapidly into a conducting medium, making it possible for electrical currents to flow through it in the form of sparks. Let us now consider the basic processes that make possible the conversion of air from an insulator into a conductor and the different types of discharge that take place in air under various conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Bazelyan EM, Raizer YP (1997) Spark discharge. CRC Press, New York Bazelyan EM, Raizer YP (1997) Spark discharge. CRC Press, New York
4.
Zurück zum Zitat Marode E (1983) In: Kunhardt E, Larssen L (eds) The glow to arc transition, in electrical breakdown and discharges in gases. Plenum Press, New York Marode E (1983) In: Kunhardt E, Larssen L (eds) The glow to arc transition, in electrical breakdown and discharges in gases. Plenum Press, New York
5.
Zurück zum Zitat Marode E (1975) The Mechanism of Spark Breakdown in Air at Atmospheric Pressure between a Positive Point to Plane. J Appl Phys 46:2005–2020CrossRef Marode E (1975) The Mechanism of Spark Breakdown in Air at Atmospheric Pressure between a Positive Point to Plane. J Appl Phys 46:2005–2020CrossRef
6.
Zurück zum Zitat Les Renardiéres Group (1977) Positive discharges in long air gaps at Les Renardiéres-1975 results. Electra 53:31–153 Les Renardiéres Group (1977) Positive discharges in long air gaps at Les Renardiéres-1975 results. Electra 53:31–153
7.
Zurück zum Zitat Les Renardiéres Group (1981) Negative discharges in long air gaps at Les Renardiéres-1978 results. Electra 74:67–216 Les Renardiéres Group (1981) Negative discharges in long air gaps at Les Renardiéres-1978 results. Electra 74:67–216
8.
Zurück zum Zitat Gao L, Larsson A, Cooray V, Scuka V (2000) Simulation of streamer discharges as finitely conducting channels. IEEE Trans Dielectr Electr Insul 7(3):458–460CrossRef Gao L, Larsson A, Cooray V, Scuka V (2000) Simulation of streamer discharges as finitely conducting channels. IEEE Trans Dielectr Electr Insul 7(3):458–460CrossRef
9.
Zurück zum Zitat Griffiths RF, Phelps CT (1976) The effects of air pressure and water vapour content on the propagation of positive corona streamers. Q J R Meteorol Soc 102:419–426CrossRef Griffiths RF, Phelps CT (1976) The effects of air pressure and water vapour content on the propagation of positive corona streamers. Q J R Meteorol Soc 102:419–426CrossRef
10.
Zurück zum Zitat Giffiths RF, Phelps CT (1976) The dependence of positive corona streamer propagation on air pressure and water vapour content. J Appl Phys 47:2929CrossRef Giffiths RF, Phelps CT (1976) The dependence of positive corona streamer propagation on air pressure and water vapour content. J Appl Phys 47:2929CrossRef
11.
Zurück zum Zitat Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulation strings. IEEE Trans PAS-98:947–957 Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulation strings. IEEE Trans PAS-98:947–957
12.
Zurück zum Zitat Becerra M, Cooray V (2006) A self-consistent upward leader propagation model. J Phys D Appl Phys 39:3708–3715CrossRef Becerra M, Cooray V (2006) A self-consistent upward leader propagation model. J Phys D Appl Phys 39:3708–3715CrossRef
13.
Zurück zum Zitat Gallimberti I (1979) The mechanism of the long spark formation. J Phys 40(C7):193–250 Gallimberti I (1979) The mechanism of the long spark formation. J Phys 40(C7):193–250
14.
Zurück zum Zitat Rizk F (1989) A model for switching impulse leader inception and breakdown of long air-gaps. IEEE Trans Power Deliv 4(1):596–603CrossRef Rizk F (1989) A model for switching impulse leader inception and breakdown of long air-gaps. IEEE Trans Power Deliv 4(1):596–603CrossRef
15.
Zurück zum Zitat Biagi CJ, Uman MA, Hill JD, Jordan DM, Rakov VA, Dwyer J (2010) Observations of stepping mechanisms in a rocket-and-wire triggered lightning flash. J Geophys Res 115:D23215. doi:10.1029/2010JD014616 CrossRef Biagi CJ, Uman MA, Hill JD, Jordan DM, Rakov VA, Dwyer J (2010) Observations of stepping mechanisms in a rocket-and-wire triggered lightning flash. J Geophys Res 115:D23215. doi:10.​1029/​2010JD014616 CrossRef
16.
Zurück zum Zitat Mazur V, Ruhnke L, Bondiou-Clergerie A, Lalande P (2000) Computer simulation of a downward negative stepped leader and its interaction with a grounded structure. J Geophys Res 105(D17):22361–22369CrossRef Mazur V, Ruhnke L, Bondiou-Clergerie A, Lalande P (2000) Computer simulation of a downward negative stepped leader and its interaction with a grounded structure. J Geophys Res 105(D17):22361–22369CrossRef
18.
Zurück zum Zitat Winckler JR, Lyons WA, Nelson TE, Nemzek RJ (1996) New high-resolution ground-based studies of sprites. J Geophys Res 101(D3):6997–7004CrossRef Winckler JR, Lyons WA, Nelson TE, Nemzek RJ (1996) New high-resolution ground-based studies of sprites. J Geophys Res 101(D3):6997–7004CrossRef
19.
Zurück zum Zitat Cooray V (2013) Mechanism of lightning flashes. In: Cooray V (ed) The lightning flash. IET Publishers, London Cooray V (2013) Mechanism of lightning flashes. In: Cooray V (ed) The lightning flash. IET Publishers, London
Metadaten
Titel
Basic Physics of Electrical Discharges
verfasst von
Vernon Cooray
Copyright-Jahr
2015
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-017-8938-7_2