Skip to main content

2020 | OriginalPaper | Buchkapitel

5. 3D SIP-CESE MHD Model on Six-Component Overset Grid System

verfasst von : Xueshang Feng

Erschienen in: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the implementation of the SIP-CESE MHD model in six component overset grid system with the aim of mitigating the problem of singularity and mesh convergence near the poles. The SIP-CESE MHD model introduced in Chap. 4 is applied to solar wind simulation with this grid system. New numerical features are also added, including: (1) The \(\nabla \cdot \mathbf {B}\) constraint error cleaning procedure via an easy-to-use fast multigrid Poisson solver, (2) The Courant-number-insensitive method that reduces the numerical viscosity without generating any instability, (3) The time-integration by multiple time stepping, (4) The time-dependent boundary condition at the subsonic region by limiting the mass flux escaping through the solar surface. In order to produce fast and slow plasma streams of the solar wind, the volumetric heating and momentum source terms are included by considering the topological effect of the magnetic field expansion factor \(f_s\) and the minimum angular distance \(\theta _b\) (at the photosphere) between an open field foot point and its nearest coronal hole boundary. The simulation result for the 3D steady-state background solar wind during Carrington rotation (CR) 1911 from the Sun to Earth is presented. The good agreements between numerical result and observations, such as the Large Angle and Spectrometric Coronagraph (LASCO) aboard the Solar Heliospheric Observatory satellite (SOHO) in the corona and Wind observations at 1 AU, demonstrated the efficiency, accuracy and the ability to reasonably produce the structured solar wind of the model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aprovitola A, Denaro FM (2007) A non-diffusive, divergence-free, finite volume-based double projection method on non-staggered grids. Int J Numer Methods Fluids 53(7):1127–1172MathSciNetMATHCrossRef Aprovitola A, Denaro FM (2007) A non-diffusive, divergence-free, finite volume-based double projection method on non-staggered grids. Int J Numer Methods Fluids 53(7):1127–1172MathSciNetMATHCrossRef
3.
Zurück zum Zitat Arge CN, Luhmann JG, Odstrčil D, Schrijver CJ, Li Y (2004) Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atmos Sol Terr Phys 66(15–16):1295–1309ADSCrossRef Arge CN, Luhmann JG, Odstrčil D, Schrijver CJ, Li Y (2004) Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atmos Sol Terr Phys 66(15–16):1295–1309ADSCrossRef
4.
Zurück zum Zitat Aschwanden M (2006) Physics of the solar corona: an introduction with problems and solutions, 2nd edn. Springer, Berlin Aschwanden M (2006) Physics of the solar corona: an introduction with problems and solutions, 2nd edn. Springer, Berlin
5.
Zurück zum Zitat Aschwanden MJ (2004) Physics of the solar corona. An introduction. Praxis Publishing Ltd, Chichester Aschwanden MJ (2004) Physics of the solar corona. An introduction. Praxis Publishing Ltd, Chichester
6.
Zurück zum Zitat Aschwanden MJ, Burlaga LF, Kaiser ML, Ng CK, Reames DV, Reiner MJ, Gombosi TI, Lugaz N, Manchester W, Roussev II, Zurbuchen TH, Farrugia CJ, Galvin AB, Lee MA, Linker JA, Mikić Z, Riley P, Alexander D, Sandman AW, Cook JW, Howard RA, Odstrčil D, Pizzo VJ, Kóta J, Liewer PC, Luhmann JG, Inhester B, Schwenn RW, Solanki SK, Vasyliunas VM, Wiegelmann T, Blush L, Bochsler P, Cairns IH, Robinson PA, Bothmer V, Kecskemety K, Llebaria A, Maksimovic M, Scholer M, Wimmer-Schweingruber RF (2008) Theoretical modeling for the STEREO mission. Space Sci Rev 136:565–604. https://doi.org/10.1007/s11214-006-9027-8ADSCrossRef Aschwanden MJ, Burlaga LF, Kaiser ML, Ng CK, Reames DV, Reiner MJ, Gombosi TI, Lugaz N, Manchester W, Roussev II, Zurbuchen TH, Farrugia CJ, Galvin AB, Lee MA, Linker JA, Mikić Z, Riley P, Alexander D, Sandman AW, Cook JW, Howard RA, Odstrčil D, Pizzo VJ, Kóta J, Liewer PC, Luhmann JG, Inhester B, Schwenn RW, Solanki SK, Vasyliunas VM, Wiegelmann T, Blush L, Bochsler P, Cairns IH, Robinson PA, Bothmer V, Kecskemety K, Llebaria A, Maksimovic M, Scholer M, Wimmer-Schweingruber RF (2008) Theoretical modeling for the STEREO mission. Space Sci Rev 136:565–604. https://​doi.​org/​10.​1007/​s11214-006-9027-8ADSCrossRef
7.
Zurück zum Zitat Axford WI, McKenzie JF (1992) The origin of high speed solar wind streams. In: Marsch E, Schwenn R (eds) Solar wind seven. COSPAR colloquia series, vol 3. Pergamon Press, Oxford, pp 1–5 Axford WI, McKenzie JF (1992) The origin of high speed solar wind streams. In: Marsch E, Schwenn R (eds) Solar wind seven. COSPAR colloquia series, vol 3. Pergamon Press, Oxford, pp 1–5
14.
Zurück zum Zitat Brackbill JU, Barnes DC (1980) The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J Comput Phys 35(3):426–430 Brackbill JU, Barnes DC (1980) The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J Comput Phys 35(3):426–430
17.
Zurück zum Zitat Chang SC, Wang XY (2003) Multi-dimensional Courant number insensitive CE/SE Euler solvers for application involving highly non-uniform meshes. AIAA-2003-5280 Chang SC, Wang XY (2003) Multi-dimensional Courant number insensitive CE/SE Euler solvers for application involving highly non-uniform meshes. AIAA-2003-5280
19.
22.
36.
Zurück zum Zitat Feng XS, Xiang CQ, Zhong DK, Fan QL (2005) A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation. Chin Sci Bull 50:672–678CrossRef Feng XS, Xiang CQ, Zhong DK, Fan QL (2005) A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation. Chin Sci Bull 50:672–678CrossRef
37.
Zurück zum Zitat Feng XS, Zhou YF, Hu YQ (2006) A 3rd order WENO GLM-MHD scheme for magnetic reconnection. Chin J Space Sci 26:1–7 Feng XS, Zhou YF, Hu YQ (2006) A 3rd order WENO GLM-MHD scheme for magnetic reconnection. Chin J Space Sci 26:1–7
39.
Zurück zum Zitat Feng XS, Zhang Y, Yang LP, Wu ST, Dryer M (2009) An operational method for shock arrival time prediction by one-dimensional CESE-HD solar wind model. J Geophys Res 114(A13):A10103ADS Feng XS, Zhang Y, Yang LP, Wu ST, Dryer M (2009) An operational method for shock arrival time prediction by one-dimensional CESE-HD solar wind model. J Geophys Res 114(A13):A10103ADS
41.
Zurück zum Zitat Feng XS, Jiang CW, Xiang CQ, Zhao XP, Wu ST (2012) A data-driven model for the global coronal evolution. Astrophys J 758(1):62ADSCrossRef Feng XS, Jiang CW, Xiang CQ, Zhao XP, Wu ST (2012) A data-driven model for the global coronal evolution. Astrophys J 758(1):62ADSCrossRef
52.
54.
Zurück zum Zitat Hartmann D, Meinke M, Schröder W (2008) An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput Fluids 37(9):1103–1125MathSciNetMATHCrossRef Hartmann D, Meinke M, Schröder W (2008) An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput Fluids 37(9):1103–1125MathSciNetMATHCrossRef
56.
Zurück zum Zitat Hayashi K, Benevolenskaya E, Hoeksema T, Liu Y, Zhao XP (2006) Three-dimensional magnetohydrodynamic simulation of a global solar corona using a temperature distribution map obtained from SOHO EIT measurements. Astrophys J Lett 636:L165–L168ADSCrossRef Hayashi K, Benevolenskaya E, Hoeksema T, Liu Y, Zhao XP (2006) Three-dimensional magnetohydrodynamic simulation of a global solar corona using a temperature distribution map obtained from SOHO EIT measurements. Astrophys J Lett 636:L165–L168ADSCrossRef
57.
Zurück zum Zitat Henshaw WD, Schwendeman DW (2008) Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J Comput Phys 227:7469–7502ADSMathSciNetMATHCrossRef Henshaw WD, Schwendeman DW (2008) Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J Comput Phys 227:7469–7502ADSMathSciNetMATHCrossRef
58.
Zurück zum Zitat Hernlund J, Tackley P (2003) Three-dimensional spherical shell convection at infinite Prandtl number using the ‘cubed sphere’ method. Comput Fluid Solid Mech 931–933 Hernlund J, Tackley P (2003) Three-dimensional spherical shell convection at infinite Prandtl number using the ‘cubed sphere’ method. Comput Fluid Solid Mech 931–933
61.
Zurück zum Zitat Holst M, Saied F (1993) Multigrid solution of the Poisson-Boltzmann equation. J Comput Chem 14(1):105–113CrossRef Holst M, Saied F (1993) Multigrid solution of the Poisson-Boltzmann equation. J Comput Chem 14(1):105–113CrossRef
64.
Zurück zum Zitat Kageyama A (2005) Dissection of a sphere and “Yin-Yang grid” grids. J Earth Simulator 3:20–28 Kageyama A (2005) Dissection of a sphere and “Yin-Yang grid” grids. J Earth Simulator 3:20–28
66.
Zurück zum Zitat Kasper JC, Abiad R, Austin G, Balat-Pichelin M, Bale SD, Belcher JW, Berg P, Bergner H, Berthomier M, Bookbinder J, Brodu E, Caldwell D, Case AW, Chandran BDG, Cheimets P, Cirtain JW, Cranmer SR, Curtis DW, Daigneau P, Dalton G, Dasgupta B, DeTomaso D, Diaz-Aguado M, Djordjevic B, Donaskowski B, Effinger M, Florinski V, Fox N, Freeman M, Gallagher D, Gary SP, Gauron T, Gates R, Goldstein M, Golub L, Gordon DA, Gurnee R, Guth G, Halekas J, Hatch K, Heerikuisen J, Ho G, Hu Q, Johnson G, Jordan SP, Korreck KE, Larson D, Lazarus AJ, Li G, Livi R, Ludlam M, Maksimovic M, McFadden JP, Marchant W, Maruca BA, McComas DJ, Messina L, Mercer T, Park S, Peddie AM, Pogorelov N, Reinhart MJ, Richardson JD, Robinson M, Rosen I, Skoug RM, Slagle A, Steinberg JT, Stevens ML, Szabo A, Taylor ER, Tiu C, Turin P, Velli M, Webb G, Whittlesey P, Wright K, Wu ST, Zank G (2016) Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for Solar Probe Plus. Space Sci Rev 204:131–186. https://doi.org/10.1007/s11214-015-0206-3ADSCrossRef Kasper JC, Abiad R, Austin G, Balat-Pichelin M, Bale SD, Belcher JW, Berg P, Bergner H, Berthomier M, Bookbinder J, Brodu E, Caldwell D, Case AW, Chandran BDG, Cheimets P, Cirtain JW, Cranmer SR, Curtis DW, Daigneau P, Dalton G, Dasgupta B, DeTomaso D, Diaz-Aguado M, Djordjevic B, Donaskowski B, Effinger M, Florinski V, Fox N, Freeman M, Gallagher D, Gary SP, Gauron T, Gates R, Goldstein M, Golub L, Gordon DA, Gurnee R, Guth G, Halekas J, Hatch K, Heerikuisen J, Ho G, Hu Q, Johnson G, Jordan SP, Korreck KE, Larson D, Lazarus AJ, Li G, Livi R, Ludlam M, Maksimovic M, McFadden JP, Marchant W, Maruca BA, McComas DJ, Messina L, Mercer T, Park S, Peddie AM, Pogorelov N, Reinhart MJ, Richardson JD, Robinson M, Rosen I, Skoug RM, Slagle A, Steinberg JT, Stevens ML, Szabo A, Taylor ER, Tiu C, Turin P, Velli M, Webb G, Whittlesey P, Wright K, Wu ST, Zank G (2016) Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for Solar Probe Plus. Space Sci Rev 204:131–186. https://​doi.​org/​10.​1007/​s11214-015-0206-3ADSCrossRef
68.
Zurück zum Zitat Kleimann J, Kopp A, Fichtner H, Grauer R (2009) A novel code for numerical 3-D MHD studies of CME expansion. Ann Geophys 27(3):989–1004ADSCrossRef Kleimann J, Kopp A, Fichtner H, Grauer R (2009) A novel code for numerical 3-D MHD studies of CME expansion. Ann Geophys 27(3):989–1004ADSCrossRef
73.
Zurück zum Zitat Li ST (2008) High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method. J Comput Phys 227(15):7368–7393ADSMathSciNetMATHCrossRef Li ST (2008) High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method. J Comput Phys 227(15):7368–7393ADSMathSciNetMATHCrossRef
77.
Zurück zum Zitat Lionello R, Linker JA, Mikić Z (2001) Including the transition region in models of the large-scale solar corona. Astrophys J 546(1):542ADSCrossRef Lionello R, Linker JA, Mikić Z (2001) Including the transition region in models of the large-scale solar corona. Astrophys J 546(1):542ADSCrossRef
78.
Zurück zum Zitat Londrillo P, Zanna LD (2004) On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. J Comput Phys 195:17–48ADSMathSciNetMATHCrossRef Londrillo P, Zanna LD (2004) On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. J Comput Phys 195:17–48ADSMathSciNetMATHCrossRef
82.
Zurück zum Zitat Maurits NM, van der Ven H, Veldman AEP (1998) Explicit multi-time stepping methods for convection-dominated flow problems. Comput Methods Appl Mech Eng 157(1–2):133–150ADSMathSciNetMATHCrossRef Maurits NM, van der Ven H, Veldman AEP (1998) Explicit multi-time stepping methods for convection-dominated flow problems. Comput Methods Appl Mech Eng 157(1–2):133–150ADSMathSciNetMATHCrossRef
84.
Zurück zum Zitat McGregor SL, Hughes WJ, Arge CN, Owens MJ, Odstrčil D (2011) The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res (Space Phys) 116:A03101. https://doi.org/10.1029/2010JA015881ADSCrossRef McGregor SL, Hughes WJ, Arge CN, Owens MJ, Odstrčil D (2011) The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind. J Geophys Res (Space Phys) 116:A03101. https://​doi.​org/​10.​1029/​2010JA015881ADSCrossRef
87.
Zurück zum Zitat Mignone A, Tzeferacos P, Bodo G (2010) High-order conservative finite difference GLM-MHD schemes for cell-centered MHD. J Comput Phys 229(17):5896–5920ADSMathSciNetMATHCrossRef Mignone A, Tzeferacos P, Bodo G (2010) High-order conservative finite difference GLM-MHD schemes for cell-centered MHD. J Comput Phys 229(17):5896–5920ADSMathSciNetMATHCrossRef
90.
Zurück zum Zitat Miller GH, Colella P (2001) A high-order Eulerian Godunov method for elastic-plastic flow in solids. J Comput Phys 167(1):131–176ADSMATHCrossRef Miller GH, Colella P (2001) A high-order Eulerian Godunov method for elastic-plastic flow in solids. J Comput Phys 167(1):131–176ADSMATHCrossRef
91.
93.
Zurück zum Zitat Nakagawa Y, Hu YQ, Wu ST (1987) The method of projected characteristics for the evolution of magnetic arches. Astron Astrophys 179:354–370ADSMATH Nakagawa Y, Hu YQ, Wu ST (1987) The method of projected characteristics for the evolution of magnetic arches. Astron Astrophys 179:354–370ADSMATH
104.
Zurück zum Zitat Parker EN (1963) Interplanetary dynamical processes. Interscience Publishers, New YorkMATH Parker EN (1963) Interplanetary dynamical processes. Interscience Publishers, New YorkMATH
105.
Zurück zum Zitat Pätzold M, Tsurutani BT, Bird MK (1997) An estimate of large-scale solar wind density and velocity profiles in a coronal hole and the coronal streamer belt. J Geophys Res 102(A11):24,151–24,160CrossRef Pätzold M, Tsurutani BT, Bird MK (1997) An estimate of large-scale solar wind density and velocity profiles in a coronal hole and the coronal streamer belt. J Geophys Res 102(A11):24,151–24,160CrossRef
106.
Zurück zum Zitat Pneuman GW, Kopp RA (1971) Gas-magnetic field interactions in the solar corona. Sol Phys 18(2):258–270ADSCrossRef Pneuman GW, Kopp RA (1971) Gas-magnetic field interactions in the solar corona. Sol Phys 18(2):258–270ADSCrossRef
107.
Zurück zum Zitat Porfir’eva GA, Yakunina GV, Delone AB, Oreshina AV, Oreshina IV (2009) Coronal streamers on the Sun and their physical properties. J Phys Stud 13(2):2901–2906 Porfir’eva GA, Yakunina GV, Delone AB, Oreshina AV, Oreshina IV (2009) Coronal streamers on the Sun and their physical properties. J Phys Stud 13(2):2901–2906
108.
Zurück zum Zitat Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154(2):284–309ADSMathSciNetMATHCrossRef Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154(2):284–309ADSMathSciNetMATHCrossRef
109.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, vol 1, 2nd edn. Cambridge University Press, Cambridge Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, vol 1, 2nd edn. Cambridge University Press, Cambridge
110.
Zurück zum Zitat Rider WJ (1998) Filtering non-solenoidal modes in numerical solutions of incompressible flows. Int J Numer Methods Fluids 28(5):789–814MathSciNetMATHCrossRef Rider WJ (1998) Filtering non-solenoidal modes in numerical solutions of incompressible flows. Int J Numer Methods Fluids 28(5):789–814MathSciNetMATHCrossRef
112.
Zurück zum Zitat Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG (2006) A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J 653:1510–1516ADSCrossRef Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG (2006) A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J 653:1510–1516ADSCrossRef
113.
Zurück zum Zitat Ronchi C, Iacono R, Paolucci PS (1996) The cubed sphere: a new method for the solution of partial differential equations in spherical geometry. J Comput Phys 124(1):93–114ADSMathSciNetMATHCrossRef Ronchi C, Iacono R, Paolucci PS (1996) The cubed sphere: a new method for the solution of partial differential equations in spherical geometry. J Comput Phys 124(1):93–114ADSMathSciNetMATHCrossRef
114.
Zurück zum Zitat Roussev II, Gombosi TI, Sokolov IV, Velli M, Manchester IV, DeZeeuw DL, Liewer P, Tóth G, Luhmann J (2003) A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys J Lett 595:L57–L61ADSCrossRef Roussev II, Gombosi TI, Sokolov IV, Velli M, Manchester IV, DeZeeuw DL, Liewer P, Tóth G, Luhmann J (2003) A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys J Lett 595:L57–L61ADSCrossRef
116.
Zurück zum Zitat Sheeley NR, Wang YM, Hawley SH, Brueckner GE, Dere KP, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Paswaters SE et al (1997) Measurements of flow speeds in the corona between 2 and 30 R. Astrophys J 484:472–478ADSCrossRef Sheeley NR, Wang YM, Hawley SH, Brueckner GE, Dere KP, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Paswaters SE et al (1997) Measurements of flow speeds in the corona between 2 and 30 R. Astrophys J 484:472–478ADSCrossRef
117.
Zurück zum Zitat Shen F, Feng X, Wu ST, Xiang C (2007) Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res 112(A11):A06109. https://doi.org/10.1029/2006JA012164ADSCrossRef Shen F, Feng X, Wu ST, Xiang C (2007) Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: numerical simulation of the January 1997 Sun-Earth connection event. J Geophys Res 112(A11):A06109. https://​doi.​org/​10.​1029/​2006JA012164ADSCrossRef
121.
Zurück zum Zitat Stone JM, Gardiner T (2009) A simple unsplit Godunov method for multidimensional MHD. New Astron 14(2):139–148ADSCrossRef Stone JM, Gardiner T (2009) A simple unsplit Godunov method for multidimensional MHD. New Astron 14(2):139–148ADSCrossRef
122.
Zurück zum Zitat Suess ST, Wang AH, Wu ST (1996) Volumetric heating in coronal streamers. J Geophys Res 101(A9):19,957–19,966CrossRef Suess ST, Wang AH, Wu ST (1996) Volumetric heating in coronal streamers. J Geophys Res 101(A9):19,957–19,966CrossRef
123.
Zurück zum Zitat Suess ST, Wang AH, Wu ST, Poletto G, McComas DJ (1999) A two-fluid, MHD coronal model. J Geophys Res 104(A3):4697–4708ADSCrossRef Suess ST, Wang AH, Wu ST, Poletto G, McComas DJ (1999) A two-fluid, MHD coronal model. J Geophys Res 104(A3):4697–4708ADSCrossRef
124.
Zurück zum Zitat Suzuki TK, Inutsuka SI (2006) Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res (Space Phys) 111:A06101. https://doi.org/10.1029/2005JA011502 Suzuki TK, Inutsuka SI (2006) Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res (Space Phys) 111:A06101. https://​doi.​org/​10.​1029/​2005JA011502
125.
Zurück zum Zitat Tanaka T (1994) Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys 111(2):381–389ADSMATHCrossRef Tanaka T (1994) Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys 111(2):381–389ADSMATHCrossRef
126.
Zurück zum Zitat Tanaka T (2003) Finite volume TVD schemes for magnetohydrodynamics on unstructured grids. In: Büchner J, Dum C, Scholer M (eds) Space plasma simulation. Lecture notes in physics, vol 615. Springer, Berlin, pp 275–295 Tanaka T (2003) Finite volume TVD schemes for magnetohydrodynamics on unstructured grids. In: Büchner J, Dum C, Scholer M (eds) Space plasma simulation. Lecture notes in physics, vol 615. Springer, Berlin, pp 275–295
129.
Zurück zum Zitat Usmanov AV (1993) A global numerical 3-D MHD model of the solar wind. Sol Phys 146(2):377–396ADSCrossRef Usmanov AV (1993) A global numerical 3-D MHD model of the solar wind. Sol Phys 146(2):377–396ADSCrossRef
130.
Zurück zum Zitat Usmanov AV (1996) A global 3-D MHD solar wind model with Alfvén waves. In: Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M (eds) American institute of physics conference series, vol 382, pp 141–144. https://doi.org/10.1063/1.51468 Usmanov AV (1996) A global 3-D MHD solar wind model with Alfvén waves. In: Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M (eds) American institute of physics conference series, vol 382, pp 141–144. https://​doi.​org/​10.​1063/​1.​51468
131.
Zurück zum Zitat Usmanov AV, Dryer M (1995) A global 3-D simulation of interplanetary dynamics in June 1991. Sol Phys 159(2):347–370ADSCrossRef Usmanov AV, Dryer M (1995) A global 3-D simulation of interplanetary dynamics in June 1991. Sol Phys 159(2):347–370ADSCrossRef
132.
Zurück zum Zitat Usmanov AV, Goldstein ML (2003) A tilted-dipole MHD model of the solar corona and solar wind. J Geophys Res 108(A9):1354CrossRef Usmanov AV, Goldstein ML (2003) A tilted-dipole MHD model of the solar corona and solar wind. J Geophys Res 108(A9):1354CrossRef
133.
Zurück zum Zitat Usmanov AV, Goldstein ML, Besser BP, Fritzer JM (2000) A global MHD solar wind model with WKB Alfvén waves: comparison with Ulysses data. J Geophys Res 105(A6):12,675–12,695CrossRef Usmanov AV, Goldstein ML, Besser BP, Fritzer JM (2000) A global MHD solar wind model with WKB Alfvén waves: comparison with Ulysses data. J Geophys Res 105(A6):12,675–12,695CrossRef
135.
Zurück zum Zitat van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB IV, Tóth G, Gombosi TI (2014) Alfvén wave solar model (AWSoM): coronal heating. Astrophys J 782:81ADSCrossRef van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB IV, Tóth G, Gombosi TI (2014) Alfvén wave solar model (AWSoM): coronal heating. Astrophys J 782:81ADSCrossRef
136.
Zurück zum Zitat Van der Ven H, Niemann-Tuitman BE, Veldman AEP (1997) An explicit multi-time-stepping algorithm for aerodynamic flows. J Comput Appl Math 82(1):423–431MathSciNetMATH Van der Ven H, Niemann-Tuitman BE, Veldman AEP (1997) An explicit multi-time-stepping algorithm for aerodynamic flows. J Comput Appl Math 82(1):423–431MathSciNetMATH
139.
141.
Zurück zum Zitat Wang XY, Chang SC (1999) A 2d non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element method. Comput Fluid Dyn J 8(2):309–325 Wang XY, Chang SC (1999) A 2d non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element method. Comput Fluid Dyn J 8(2):309–325
144.
Zurück zum Zitat Wang YM, Sheeley NR Jr, Walters JH, Brueckner GE, Howard RA, Michels DJ, Lamy PL, Schwenn R, Simnett GM (1998) Origin of streamer material in the outer corona. Astrophys J Lett 498:L165. https://doi.org/10.1086/311321 Wang YM, Sheeley NR Jr, Walters JH, Brueckner GE, Howard RA, Michels DJ, Lamy PL, Schwenn R, Simnett GM (1998) Origin of streamer material in the outer corona. Astrophys J Lett 498:L165. https://​doi.​org/​10.​1086/​311321
148.
Zurück zum Zitat Wu ST, Guo WP, Michels DJ, Burlaga LF (1999) MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: an analysis of the January 1997 Sun-Earth connection event. J Geophys Res 104:14,789–14,802. https://doi.org/10.1029/1999JA900099CrossRef Wu ST, Guo WP, Michels DJ, Burlaga LF (1999) MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: an analysis of the January 1997 Sun-Earth connection event. J Geophys Res 104:14,789–14,802. https://​doi.​org/​10.​1029/​1999JA900099CrossRef
151.
Zurück zum Zitat Yen JC, Duell EG, Martindale W (2006) CAA using 3D CESE method with a simplified Courant number insensitive scheme. AIAA-2006-2417 Yen JC, Duell EG, Martindale W (2006) CAA using 3D CESE method with a simplified Courant number insensitive scheme. AIAA-2006-2417
152.
Zurück zum Zitat Yoshida M, Kageyama A (2004) Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell. Geophys Res Lett 31(L12):609 Yoshida M, Kageyama A (2004) Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell. Geophys Res Lett 31(L12):609
153.
Zurück zum Zitat Yu ST, Chang SC (1997) Treatments of stiff source terms in conservation laws by the method of space-time conservation element and solution element. AIAA-97-0435 Yu ST, Chang SC (1997) Treatments of stiff source terms in conservation laws by the method of space-time conservation element and solution element. AIAA-97-0435
154.
Zurück zum Zitat Zhang ZC, Yu ST (1999) Shock capturing without Riemann solver—a modified space-time CE/SE method for conservation laws. AIAA-99-0904 Zhang ZC, Yu ST (1999) Shock capturing without Riemann solver—a modified space-time CE/SE method for conservation laws. AIAA-99-0904
155.
Zurück zum Zitat Zhang ZC, Yu ST, Chang SC, Himansu A, Jorgenson PCE (1999) A modified space-time conservation element and solution element method for Euler and Navier-Stokes equations. AIAA-99-3277 Zhang ZC, Yu ST, Chang SC, Himansu A, Jorgenson PCE (1999) A modified space-time conservation element and solution element method for Euler and Navier-Stokes equations. AIAA-99-3277
156.
Zurück zum Zitat Zhang ZC, Yu ST, Chang SC (2002) A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes. J Comput Phys 175(1):168–199ADSMATHCrossRef Zhang ZC, Yu ST, Chang SC (2002) A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes. J Comput Phys 175(1):168–199ADSMATHCrossRef
158.
Zurück zum Zitat Zhou YF, Feng XS (2008) Numerical study of successive CMEs during November 4–5, 1998. Sci China E 51(10):1600–1610MATHCrossRef Zhou YF, Feng XS (2008) Numerical study of successive CMEs during November 4–5, 1998. Sci China E 51(10):1600–1610MATHCrossRef
159.
Zurück zum Zitat Zhou YF, Feng XS, Wu ST (2008) Numerical simulation of the 12 May 1997 CME event. Chin Phys Lett 25(2):790–793ADSCrossRef Zhou YF, Feng XS, Wu ST (2008) Numerical simulation of the 12 May 1997 CME event. Chin Phys Lett 25(2):790–793ADSCrossRef
161.
Zurück zum Zitat Zurbuchen TH (2007) A new view of the coupling of the Sun and the heliosphere. Annu Rev Astron Astrophys 45(1):297–338ADSCrossRef Zurbuchen TH (2007) A new view of the coupling of the Sun and the heliosphere. Annu Rev Astron Astrophys 45(1):297–338ADSCrossRef
Metadaten
Titel
3D SIP-CESE MHD Model on Six-Component Overset Grid System
verfasst von
Xueshang Feng
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9081-4_5

Premium Partner