Skip to main content

2020 | OriginalPaper | Buchkapitel

A Generalized Ensemble Machine Learning Approach for Landslide Susceptibility Modeling

verfasst von : Akila Bandara, Yashodha Hettiarachchi, Kusal Hettiarachchi, Sidath Munasinghe, Ishara Wijesinghe, Uthayasanker Thayasivam

Erschienen in: Data Management, Analytics and Innovation

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a novel machine learning approach backed by ensembling machine learning algorithms to build landslide susceptibility maps. The results reveal that this approach outperforms prior machine learning-based approaches in terms of precision, recall, and F-score for landslide susceptibility modeling. In this research, three ensemble machine learning algorithms were tested for their applicability in landslide prediction domain, namely, random forest, rotation forest, and XGBoost. A comparison between these ensemble models and the machine learning algorithms used in previous researches was also performed. In order to evaluate the model’s ability to generalize results, two different study areas were used in this study, which are Ratnapura district in Sri Lanka and Glenmalure in Ireland. Several landslide conditioning features including land use, landform, vegetation index, elevation, overburden, aspect, curvature, catchment area, drainage density, distance to water streams, soil, bedrock condition, lithology and rainfall prepared by surveying, remote sensing, and deriving from Digital Elevation Model (DEM) were utilized in building the spatial database. Importantly, this study introduces new landslide conditioning factors like overburden and water catchment areas which have good importance values. Further, research applies dynamic factors like rainfall and vegetation index for susceptibility map building, by making use of remote sensing data which is updated periodically. The study emphasizes the capability of ensemble approaches in generalizing results well for both study areas which inherit completely different environmental properties, and its ability to provide a scalable map building mechanism. Also, useful insights and guidelines are also provided for fellow researchers who are interested in building susceptibility maps using machine learning approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Karunaratne, M. (2017). Sri Lanka floods and landslides (p. 2017). Colombo: IOM Sri Lanka. Karunaratne, M. (2017). Sri Lanka floods and landslides (p. 2017). Colombo: IOM Sri Lanka.
2.
Zurück zum Zitat U. W. L. Chandradasa, Mallawatantri, A., & Wijethunga, R. (2009). Sri Lanka national report on disaster risk, poverty and human development relationship. Ministry of Disaster Management and Human Rights, Sri Lanka. U. W. L. Chandradasa, Mallawatantri, A., & Wijethunga, R. (2009). Sri Lanka national report on disaster risk, poverty and human development relationship. Ministry of Disaster Management and Human Rights, Sri Lanka.
3.
Zurück zum Zitat Subhashini, L. D. C. S., & Premaratne, H. L. (2013). Landslide prediction using artificial neural networks. In ICSBE-2012: International Conference on Sustainable Built Environment, Kandy, Sri Lanka. Subhashini, L. D. C. S., & Premaratne, H. L. (2013). Landslide prediction using artificial neural networks. In ICSBE-2012: International Conference on Sustainable Built Environment, Kandy, Sri Lanka.
4.
Zurück zum Zitat Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes. Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes.
5.
Zurück zum Zitat Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal Physics Sciences, 3(11), 1–15. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal Physics Sciences, 3(11), 1–15.
6.
Zurück zum Zitat Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., et al. (2017). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., et al. (2017). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China).
7.
Zurück zum Zitat Chen, H., Tang, H. &, Zeng, Z. (2013). Landslide deformation prediction based on recurrent neural network. In International Conference on Neural Information Processing, China. Chen, H., Tang, H. &, Zeng, Z. (2013). Landslide deformation prediction based on recurrent neural network. In International Conference on Neural Information Processing, China.
8.
Zurück zum Zitat Oh, H.-J. & Lee, S. (2017). Shallow Landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Oh, H.-J. & Lee, S. (2017). Shallow Landslide susceptibility modeling using the data mining models artificial neural network and boosted tree.
11.
Zurück zum Zitat Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. JAIR, 16, 321–357. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. JAIR, 16, 321–357.
12.
Zurück zum Zitat Chung, C.-J. F. & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Chung, C.-J. F. & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping.
13.
Zurück zum Zitat Ward, T. J., Li, R.-M., & Simons, D. B. Mathematical modeling approach for delineating landslide hazards in watersheds. Ward, T. J., Li, R.-M., & Simons, D. B. Mathematical modeling approach for delineating landslide hazards in watersheds.
14.
Zurück zum Zitat Hong, Y., Adler, R. F., Huffman, G. (2007). An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1671–1680.CrossRef Hong, Y., Adler, R. F., Huffman, G. (2007). An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1671–1680.CrossRef
15.
Zurück zum Zitat Chang, K., Liu, J., Kuo, C., Wang, H., & Chang, Y. (2017). Combining multi-temporal satellite images and a cloud platform to develop new evaluating procedures for landslide vulnerability study. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, pp. 1912–1915. Chang, K., Liu, J., Kuo, C., Wang, H., & Chang, Y. (2017). Combining multi-temporal satellite images and a cloud platform to develop new evaluating procedures for landslide vulnerability study. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, pp. 1912–1915.
16.
Zurück zum Zitat Wu, A., Zeng, Z., & Fu, C. (2014). Data mining paradigm based on functional networks with applications in landslide prediction. In 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, pp. 2826–2830. Wu, A., Zeng, Z., & Fu, C. (2014). Data mining paradigm based on functional networks with applications in landslide prediction. In 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, pp. 2826–2830.
17.
Zurück zum Zitat Chaturvedi, P., Srivastava, S., & Tyagi, N. (2015) Prediction of landslide deformation using back-propagation neural network. In IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions, India. Chaturvedi, P., Srivastava, S., & Tyagi, N. (2015) Prediction of landslide deformation using back-propagation neural network. In IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions, India.
18.
Zurück zum Zitat Sa, R., Uzirb, N., Rb, S., & Banerjeeb, S. (2016). Experimenting XGBoost algorithm for prediction and classification of different datasets 9(40). Sa, R., Uzirb, N., Rb, S., & Banerjeeb, S. (2016). Experimenting XGBoost algorithm for prediction and classification of different datasets 9(40).
19.
Zurück zum Zitat Chen T., & Guestrin C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 785–794. Chen T., & Guestrin C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, California, USA, pp. 785–794.
20.
Zurück zum Zitat Rodrı´guez, J. J.& Kuncheva, L. I. (2006). Rotation forest: A new classifier ensemble method. Rodrı´guez, J. J.& Kuncheva, L. I. (2006). Rotation forest: A new classifier ensemble method.
21.
Zurück zum Zitat Chen, S. F. & Hsiung, P. A (2017). Landslide prediction with model switching. In The 2018 IEEE Conference on Dependable and Secure Computing, Taiwan. Chen, S. F. & Hsiung, P. A (2017). Landslide prediction with model switching. In The 2018 IEEE Conference on Dependable and Secure Computing, Taiwan.
22.
Zurück zum Zitat Bui, D. T, Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 9, 11, 27 January 2015. Bui, D. T, Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 9, 11, 27 January 2015.
23.
Zurück zum Zitat Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., et al. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160.CrossRef Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., et al. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160.CrossRef
24.
Zurück zum Zitat Devi, S. R., Venkatesh, C., Agarwal, P. & Arulmozhivarman, P. (2014). Daily rainfall forecasting using artificial neural networks for early warning of landslides. In 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2218–2224). IEEE, September, 2014. Devi, S. R., Venkatesh, C., Agarwal, P. & Arulmozhivarman, P. (2014). Daily rainfall forecasting using artificial neural networks for early warning of landslides. In 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2218–2224). IEEE, September, 2014.
26.
Zurück zum Zitat Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest.
Metadaten
Titel
A Generalized Ensemble Machine Learning Approach for Landslide Susceptibility Modeling
verfasst von
Akila Bandara
Yashodha Hettiarachchi
Kusal Hettiarachchi
Sidath Munasinghe
Ishara Wijesinghe
Uthayasanker Thayasivam
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9364-8_6