Skip to main content

2020 | OriginalPaper | Buchkapitel

22. Performance Analysis of ECDM Process Using Surfactant Mixed Electrolyte

verfasst von : Viveksheel Rajput, Mudimallana Goud, Narendra Mohan Suri

Erschienen in: Manufacturing Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With rapid escalation in the utilization of glass materials in microelectromechanical systems (MEMS) applications, need is generated to develop more sophisticated process for machining these materials at a higher machining speed with excellent features. Electrochemical discharge machining (ECDM) is proven to be a successful method for machining glass materials with ease which utilizes the thermal heat of the sparks and chemical etching action of electrolyte for material removal simultaneously. However, low material removal rate and thermal cracks at the micro-hole entrance edges are some of the concerns which need to be enhanced. Several parameters influence the ECDM process but gas film formation and its thickness is the key determinant for obtaining higher quality machined surface. This present paper investigates the effect of surfactant addition, i.e., cationic surfactant cetyltrimethylammonium bromide (CTAB) in three different concentrations, into the 20 wt% alkaline solution of NaOH electrolyte for improving the material removal rate and thermal cracks during micro-drilling operation. Moreover, a transient thermal model based upon finite element modeling (FEM) is developed to analyze the material removal rate (MRR) with and without the presence of surfactants in the ECDM process. Simulation results are compared with the previously reported experimental results. Surfactant addition affects the electrochemical properties of the electrolyte and leads to the increase in tool electrode wettability which produces thin and stable gas film at the tool vicinity. As a result, more current densities are produced and hence faster material removal rate. Experimental results revealed that a significant increase in removal rate and reduction in thermal cracks were observed during micro-drilling process in the presence of surfactants. An increase of 39.31% was observed in material removal rate of soda–lime glass in the presence of CTAB surfactant at critical micelle concentration (CMC). Simulation results exhibit good similarity in the trend of the material removal rate with the experimental results. The developed thermal model can be effectively utilized to determine the removal rate of surfactant mixed ECDM process. Based on the observation of present investigation, a more reliable and effective surfactant mixed ECDM process with improved removal rate and surface quality is inferred.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhiyuan, W., Yong, L., Minghong, M., et al.: Fabrication of glass micro-holes with high quality by electrochemical discharge machining with a rotary helix electrode. Recent Patents Mech. Eng. 11(2), 168–173 (2018)CrossRef Zhiyuan, W., Yong, L., Minghong, M., et al.: Fabrication of glass micro-holes with high quality by electrochemical discharge machining with a rotary helix electrode. Recent Patents Mech. Eng. 11(2), 168–173 (2018)CrossRef
2.
Zurück zum Zitat Basak, I., Ghosh, A.: Mechanism of material removal in electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 71, 350–359 (1997)CrossRef Basak, I., Ghosh, A.: Mechanism of material removal in electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 71, 350–359 (1997)CrossRef
3.
Zurück zum Zitat Ziki, A.J.D., Didar, T.F., Wuthrich, R.: Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 57, 66–72 (2012)CrossRef Ziki, A.J.D., Didar, T.F., Wuthrich, R.: Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 57, 66–72 (2012)CrossRef
4.
Zurück zum Zitat Daridon, A., Fascio, V., Lichtenberg, J., Wuthrich, R., Langen, H., Verpoorte, E., De Rooij, N.F.: Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem. 371, 261–269 (2001)CrossRef Daridon, A., Fascio, V., Lichtenberg, J., Wuthrich, R., Langen, H., Verpoorte, E., De Rooij, N.F.: Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem. 371, 261–269 (2001)CrossRef
5.
Zurück zum Zitat Maillard, P., Despont, B., Bleuler, H., Wuthrich, R.: Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving SACE. J. Micromech. Microeng. 17, 1343–1349 (2007)CrossRef Maillard, P., Despont, B., Bleuler, H., Wuthrich, R.: Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving SACE. J. Micromech. Microeng. 17, 1343–1349 (2007)CrossRef
6.
Zurück zum Zitat Wüthrich, R., Spaelter, U., Wu, Y., Bleuler, H.: A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving SACE. J. Micromech. Microeng. 16, 1891–1896 (2006)CrossRef Wüthrich, R., Spaelter, U., Wu, Y., Bleuler, H.: A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving SACE. J. Micromech. Microeng. 16, 1891–1896 (2006)CrossRef
7.
Zurück zum Zitat Kurafuji, H., Suda, K.: Electrical discharge drilling of glass. Ann. CIRP. 16, 415–419 (1968) Kurafuji, H., Suda, K.: Electrical discharge drilling of glass. Ann. CIRP. 16, 415–419 (1968)
8.
Zurück zum Zitat Basak, I., Ghosh, A.: Mechanism of spark generation during electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 62, 46–53 (2003)CrossRef Basak, I., Ghosh, A.: Mechanism of spark generation during electrochemical discharge machining a theoretical model and experimental verification. J. Mater. Process. Technol. 62, 46–53 (2003)CrossRef
9.
Zurück zum Zitat Jain, V.K., Dixit, P.M., Pandey, P.M.: On the analysis of the electrochemical spark machining process. Int. J. Mach. Tools Manuf. 39, 165–186 (1999)CrossRef Jain, V.K., Dixit, P.M., Pandey, P.M.: On the analysis of the electrochemical spark machining process. Int. J. Mach. Tools Manuf. 39, 165–186 (1999)CrossRef
10.
Zurück zum Zitat Wuthrich, R., Hof, L. A., Lal, A., Fujisaki, K., H., Bleuler., Mandin, Ph., Picard, G.: Physical principles and miniaturization of spark assisted chemical engraving SACE. J. Micromech. Microeng. 15, 10 (2005) Wuthrich, R., Hof, L. A., Lal, A., Fujisaki, K., H., Bleuler., Mandin, Ph., Picard, G.: Physical principles and miniaturization of spark assisted chemical engraving SACE. J. Micromech. Microeng. 15, 10 (2005)
11.
Zurück zum Zitat Harugade, M.L., Waigaonkar, S.D.: Effect of different electrolytes on material removal rate diameter of hole and spark in electrochemical discharge machining. Adv. Manuf. Lect. Mech. Engine. (2018) Harugade, M.L., Waigaonkar, S.D.: Effect of different electrolytes on material removal rate diameter of hole and spark in electrochemical discharge machining. Adv. Manuf. Lect. Mech. Engine. (2018)
12.
Zurück zum Zitat Cheng, C.P., Wu, K.L., Mai, C.C., Yang, C.K., Hsu, Y.S., Yan, B.H.: Study of gas film quality in electrochemical discharge machining. Int. J. Mach Tools Manuf. 50, 689–697 (2010)CrossRef Cheng, C.P., Wu, K.L., Mai, C.C., Yang, C.K., Hsu, Y.S., Yan, B.H.: Study of gas film quality in electrochemical discharge machining. Int. J. Mach Tools Manuf. 50, 689–697 (2010)CrossRef
13.
Zurück zum Zitat El-Haddad, R., Wuthrich, R.: A mechanistic model of the gas film dynamics during the electrochemical discharge phenomenon. J. Appl. Electrochem. 40, 1853–1858 (2010)CrossRef El-Haddad, R., Wuthrich, R.: A mechanistic model of the gas film dynamics during the electrochemical discharge phenomenon. J. Appl. Electrochem. 40, 1853–1858 (2010)CrossRef
14.
Zurück zum Zitat Fascio, V., Langen, H., Bleuler, H., et al.: Investigations of the spark- assisted chemical engraving. Electrochem. Commun. 5, 203–207 (2003)CrossRef Fascio, V., Langen, H., Bleuler, H., et al.: Investigations of the spark- assisted chemical engraving. Electrochem. Commun. 5, 203–207 (2003)CrossRef
16.
Zurück zum Zitat Vogt, H.: On the supersaturation of gas in the concentration boundary layer of gas evolving electrodes. Electrochim. Acta 25, 527–531 (1980)CrossRef Vogt, H.: On the supersaturation of gas in the concentration boundary layer of gas evolving electrodes. Electrochim. Acta 25, 527–531 (1980)CrossRef
17.
Zurück zum Zitat Jawalkar, C.S., Sharma, A.K., Pradeep, K.: Micromachining with ECDM: research potentials and experimental investigations. World Acad. Sci. Eng. Technol. Sci. Direct. 61, 90–95 (2012) Jawalkar, C.S., Sharma, A.K., Pradeep, K.: Micromachining with ECDM: research potentials and experimental investigations. World Acad. Sci. Eng. Technol. Sci. Direct. 61, 90–95 (2012)
18.
Zurück zum Zitat Wuthrich, R., Hof, L.A.: The gas film in spark assisted chemical engraving SACE—a key element for micro-machining applications. Int. J. Mach. Tools Manuf. 46, 828–835 (2006)CrossRef Wuthrich, R., Hof, L.A.: The gas film in spark assisted chemical engraving SACE—a key element for micro-machining applications. Int. J. Mach. Tools Manuf. 46, 828–835 (2006)CrossRef
19.
Zurück zum Zitat Sabahi, N., Razfar, M.R., Hajian, M.: Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining ECDM process. J. Mater. Process. Technol. 250 (2017) Sabahi, N., Razfar, M.R., Hajian, M.: Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining ECDM process. J. Mater. Process. Technol. 250 (2017)
20.
Zurück zum Zitat Christenson, H.K., Yaminsky, V.V.: Solute effects on bubble coalescence. J. Phys. Chem. 99, 10420 (1995)CrossRef Christenson, H.K., Yaminsky, V.V.: Solute effects on bubble coalescence. J. Phys. Chem. 99, 10420 (1995)CrossRef
21.
Zurück zum Zitat Behroozfar, A., Razfar, M.R.: Experimental and numerical study of material removal in electrochemical discharge machining (ECDM). Mater. Manuf. Processes 31(4), 495–503 (2015)CrossRef Behroozfar, A., Razfar, M.R.: Experimental and numerical study of material removal in electrochemical discharge machining (ECDM). Mater. Manuf. Processes 31(4), 495–503 (2015)CrossRef
22.
Zurück zum Zitat Bhondwe, K.L., Yadava, V., Kathiresan, G.: Finite element prediction of material removal rate due to electro-chemical spark machining. Int. J. Mach. Tool Manu. 46, 1699–1706 (2006)CrossRef Bhondwe, K.L., Yadava, V., Kathiresan, G.: Finite element prediction of material removal rate due to electro-chemical spark machining. Int. J. Mach. Tool Manu. 46, 1699–1706 (2006)CrossRef
23.
Zurück zum Zitat Wei, C., Xu, K., Ni, J., et al.: A finite element based model for electrochemical discharge machining in discharge regime. Int. J. Adv. Manuf. Tech. 54, 987–995 (2011)CrossRef Wei, C., Xu, K., Ni, J., et al.: A finite element based model for electrochemical discharge machining in discharge regime. Int. J. Adv. Manuf. Tech. 54, 987–995 (2011)CrossRef
24.
Zurück zum Zitat Goud, M.M., Sharma, A.K.: A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc IMechE Part C: J. Mech. Eng. Sci. (2016) Goud, M.M., Sharma, A.K.: A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc IMechE Part C: J. Mech. Eng. Sci. (2016)
25.
Zurück zum Zitat Rajput, V., Goud, M.M., Suri, N.M.: Experimental investigation to improve the removal rate of material in ECDM process by utilizing different tool electrode shapes. Int. J. Techn. Innov. Modern Eng. Sci. (IJTIMES) 5(2), 333–341 (2019) Rajput, V., Goud, M.M., Suri, N.M.: Experimental investigation to improve the removal rate of material in ECDM process by utilizing different tool electrode shapes. Int. J. Techn. Innov. Modern Eng. Sci. (IJTIMES) 5(2), 333–341 (2019)
26.
Zurück zum Zitat Kulkarni, A., Sharan, R., Lal, G.K.: An experimental study of discharge mechanism in electrochemical discharge machining. Int. J. Mach. Tool Manuf. 42, 1121–1127 (2002) Kulkarni, A., Sharan, R., Lal, G.K.: An experimental study of discharge mechanism in electrochemical discharge machining. Int. J. Mach. Tool Manuf. 42, 1121–1127 (2002)
27.
Zurück zum Zitat Singh, D., Goud, M.M.: A 3D spark model to evaluate MRR in ECDM. J. Adv. Manufact. Syst. (2019) Singh, D., Goud, M.M.: A 3D spark model to evaluate MRR in ECDM. J. Adv. Manufact. Syst. (2019)
Metadaten
Titel
Performance Analysis of ECDM Process Using Surfactant Mixed Electrolyte
verfasst von
Viveksheel Rajput
Mudimallana Goud
Narendra Mohan Suri
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4619-8_22

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.