Skip to main content

2022 | OriginalPaper | Buchkapitel

Investigations on Power-Aware Solutions in Low Power Sensor Networks

verfasst von : S. S. Vidhya, Senthilkumar Mathi

Erschienen in: Inventive Communication and Computational Technologies

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Power management is a very vast topic and the solution spans around hardware and software approaches. The power efficiency of IoT low-power devices becomes an important component of modern communication environments since it is very costly or impossible to replace or change device batteries in deployed environments. Energy management in sensor networks is an open challenge to researchers Hence, this article is investigated the power management solutions introduced in various literature. A detailed investigation of energy harvesting-based techniques and network-based solutions for efficient utilization of available energy is explored. The paper also highlights the recent advancement in technologies to improve battery life by adding low power components, circuitry, and low power communication protocols such as ZigBee, RPL, wirelessHART, Bluetooth low energy, and LoRAWAN. The analysis drawn from the investigation is the combination of the power provisioning approach with power control-based solutions are the best suited for designing power-efficient schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Zagrouba, A. Kardi, Comparative study of energy efficient routing techniques in wireless sensor networks. Information 12(1), 42 (2021)CrossRef R. Zagrouba, A. Kardi, Comparative study of energy efficient routing techniques in wireless sensor networks. Information 12(1), 42 (2021)CrossRef
2.
Zurück zum Zitat A. Sharma, A. Kakkar, A review on solar forecasting and power management approaches for energy‐harvesting wireless sensor networks. Int. J. Commun. Syst. 33(8) (25 May 2020) A. Sharma, A. Kakkar, A review on solar forecasting and power management approaches for energy‐harvesting wireless sensor networks. Int. J. Commun. Syst. 33(8) (25 May 2020)
3.
Zurück zum Zitat K.A.M. Zeinab, S.A.A. Elmustafa, Internet of things applications, challenges and related future technologies. World Sci. News 2(67), 126–148 (2017) K.A.M. Zeinab, S.A.A. Elmustafa, Internet of things applications, challenges and related future technologies. World Sci. News 2(67), 126–148 (2017)
4.
Zurück zum Zitat R. Chiwariro, Quality of service aware routing protocols in wireless multimedia sensor networks: survey. Int. J. Inf. Technol. 29, 1–2 (2020) R. Chiwariro, Quality of service aware routing protocols in wireless multimedia sensor networks: survey. Int. J. Inf. Technol. 29, 1–2 (2020)
5.
Zurück zum Zitat K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan, M. Srivastava, Heliomote: Enabling long-lived sensor networks through solar energy harvesting, in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, (2005), pp. 309–309 K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan, M. Srivastava, Heliomote: Enabling long-lived sensor networks through solar energy harvesting, in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, (2005), pp. 309–309
6.
Zurück zum Zitat C. Park, P. H. Chou, Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes, in 2006 3rd Annual IEEE Communications Society on Sensor and ad hoc Communications and Networks, vol. 1. (IEEE, 2006), pp. 168–177 C. Park, P. H. Chou, Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes, in 2006 3rd Annual IEEE Communications Society on Sensor and ad hoc Communications and Networks, vol. 1. (IEEE, 2006), pp. 168–177
7.
Zurück zum Zitat X. Jiang, J. Polastre, D. Culler, Perpetual environmentally powered sensor networks, in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005 (IEEE, 2005), pp. 463–468 X. Jiang, J. Polastre, D. Culler, Perpetual environmentally powered sensor networks, in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005 (IEEE, 2005), pp. 463–468
8.
Zurück zum Zitat C. Wang, J. Li, Y. Yang, F. Ye, Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Trans. Mob. Comput. 17(3), 560–576 (2017)CrossRef C. Wang, J. Li, Y. Yang, F. Ye, Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Trans. Mob. Comput. 17(3), 560–576 (2017)CrossRef
9.
Zurück zum Zitat A.H. Dehwah, J.S. Shamma, C.G. Claudel, A distributed routing scheme for energy management in solar powered sensor networks. Ad Hoc Netw. 67, 11–23 (2017)CrossRef A.H. Dehwah, J.S. Shamma, C.G. Claudel, A distributed routing scheme for energy management in solar powered sensor networks. Ad Hoc Netw. 67, 11–23 (2017)CrossRef
10.
Zurück zum Zitat J. Zhang, Z. Li, S. Tang, Value of information aware opportunistic duty cycling in solar harvesting sensor networks. IEEE Trans. Industr. Inf. 12(1), 348–360 (2015)CrossRef J. Zhang, Z. Li, S. Tang, Value of information aware opportunistic duty cycling in solar harvesting sensor networks. IEEE Trans. Industr. Inf. 12(1), 348–360 (2015)CrossRef
11.
Zurück zum Zitat M. M. Abbas, M. A. Tawhid, K. Saleem, Z. Muhammad, N. A. Saqib, H. Malik, and H. Mahmood, Solar energy harvesting and management in wireless sensor networks. Int. J. Distrib. Sensor Netw. 10(7), 436107 (2014) M. M. Abbas, M. A. Tawhid, K. Saleem, Z. Muhammad, N. A. Saqib, H. Malik, and H. Mahmood, Solar energy harvesting and management in wireless sensor networks. Int. J. Distrib. Sensor Netw. 10(7), 436107 (2014)
12.
Zurück zum Zitat Y. Wu, B. Li, F. Zhang, Predictive power management for wind powered wireless sensor node. Future Internet 10(9), 85 (2018)CrossRef Y. Wu, B. Li, F. Zhang, Predictive power management for wind powered wireless sensor node. Future Internet 10(9), 85 (2018)CrossRef
13.
Zurück zum Zitat S. Kosunalp, An energy prediction algorithm for wind-powered wireless sensor networks with energy harvesting. Energy 139, 1275–1280 (2017)CrossRef S. Kosunalp, An energy prediction algorithm for wind-powered wireless sensor networks with energy harvesting. Energy 139, 1275–1280 (2017)CrossRef
14.
Zurück zum Zitat A. Jushi, A. Pegatoquet, T.N. Le, Wind energy harvesting for autonomous wireless sensor networks, in 2016 Euromicro Conference on Digital System Design (DSD) (IEEE, 2016), pp. 301–308 A. Jushi, A. Pegatoquet, T.N. Le, Wind energy harvesting for autonomous wireless sensor networks, in 2016 Euromicro Conference on Digital System Design (DSD) (IEEE, 2016), pp. 301–308
15.
Zurück zum Zitat Y. Wu, W. Liu, Y. Zhu, Design of a wind energy harvesting wireless sensor node, in 2013 IEEE Third International Conference on Information Science and Technology (ICIST) (IEEE, 2013), pp. 1494–1497 Y. Wu, W. Liu, Y. Zhu, Design of a wind energy harvesting wireless sensor node, in 2013 IEEE Third International Conference on Information Science and Technology (ICIST) (IEEE, 2013), pp. 1494–1497
16.
Zurück zum Zitat D. Porcarelli, D. Spenza, D. Brunelli, A. C Energy-aware approaches ammarano, C. Petrioli, and L. Benini, Adaptive rectifier driven by power intake predictors for wind energy harvesting sensor networks. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), pp. 471–482 (2014) D. Porcarelli, D. Spenza, D. Brunelli, A. C Energy-aware approaches ammarano, C. Petrioli, and L. Benini, Adaptive rectifier driven by power intake predictors for wind energy harvesting sensor networks. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), pp. 471–482 (2014)
17.
Zurück zum Zitat Y.K. Tan, S.K. Panda, Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE Trans. Power Electron. 26(1), 38–50 (2010) Y.K. Tan, S.K. Panda, Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE Trans. Power Electron. 26(1), 38–50 (2010)
18.
Zurück zum Zitat S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with q-learning. IEEE Access 4, 5755–5763 (2016)CrossRef S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with q-learning. IEEE Access 4, 5755–5763 (2016)CrossRef
19.
Zurück zum Zitat S. Yang, X. Yang, J.A. McCann, T. Zhang, G. Liu, Z. Liu, Distributed networking in autonomic solar powered wireless sensor networks. IEEE J. Sel. Areas Commun. 31(12), 750–761 (2013)CrossRef S. Yang, X. Yang, J.A. McCann, T. Zhang, G. Liu, Z. Liu, Distributed networking in autonomic solar powered wireless sensor networks. IEEE J. Sel. Areas Commun. 31(12), 750–761 (2013)CrossRef
20.
Zurück zum Zitat F. Akhtar, M.H. Rehmani, Energy harvesting for self-sustainable wireless body area networks. IT Prof. 19(2), 32–40 (2017)CrossRef F. Akhtar, M.H. Rehmani, Energy harvesting for self-sustainable wireless body area networks. IT Prof. 19(2), 32–40 (2017)CrossRef
21.
Zurück zum Zitat R. Kumar, D. Bhardwaj, M. K. Mishra, Enhance the lifespan of underwater sensor network through energy efficient hybrid data communication scheme, in 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (IEEE, 2020), pp. 355–359 R. Kumar, D. Bhardwaj, M. K. Mishra, Enhance the lifespan of underwater sensor network through energy efficient hybrid data communication scheme, in 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (IEEE, 2020), pp. 355–359
22.
Zurück zum Zitat Y. Song, C.H. Yang, S.K. Hong, S.J. Hwang, J.H. Kim, J.Y. Choi, S.K. Ryu, T.H. Sung, Road energy harvester designed as a macro-power source using the piezoelectric effect. Int. J. Hydrogen Energy, 41(29), pp. 12 563–12 568, (2016) Y. Song, C.H. Yang, S.K. Hong, S.J. Hwang, J.H. Kim, J.Y. Choi, S.K. Ryu, T.H. Sung, Road energy harvester designed as a macro-power source using the piezoelectric effect. Int. J. Hydrogen Energy, 41(29), pp. 12 563–12 568, (2016)
23.
Zurück zum Zitat T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sens. J. 17(7), 2165–2173 (2017)CrossRef T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sens. J. 17(7), 2165–2173 (2017)CrossRef
24.
Zurück zum Zitat S. Zhang, A. Seyedi, Statistical models for harvested power from human motion. IEEE J. Sel. Areas Commun. 33(8), 1667–1679 (2015)CrossRef S. Zhang, A. Seyedi, Statistical models for harvested power from human motion. IEEE J. Sel. Areas Commun. 33(8), 1667–1679 (2015)CrossRef
25.
Zurück zum Zitat A. Bereketli, S. Bilgen, Remotely powered underwater acoustic sensor networks. IEEE Sens. J. 12(12), 3467–3472 (2012)CrossRef A. Bereketli, S. Bilgen, Remotely powered underwater acoustic sensor networks. IEEE Sens. J. 12(12), 3467–3472 (2012)CrossRef
26.
Zurück zum Zitat C. Knight, J. Davidson, Thermoelectric energy harvesting as a wireless sensor node power source, in Active and Passive Smart Structures and Integrated Systems 2010, vol. 7643. (International Society for Optics and Photonics, 2010), pp. 76431E C. Knight, J. Davidson, Thermoelectric energy harvesting as a wireless sensor node power source, in Active and Passive Smart Structures and Integrated Systems 2010, vol. 7643. (International Society for Optics and Photonics, 2010), pp. 76431E
27.
Zurück zum Zitat R. Middya, N. Chakravarty, M.K. Naskar, Compressive sensing in wireless sensor networks–a survey. IETE Tech. Rev. 34(6), 642–654 (2017)CrossRef R. Middya, N. Chakravarty, M.K. Naskar, Compressive sensing in wireless sensor networks–a survey. IETE Tech. Rev. 34(6), 642–654 (2017)CrossRef
28.
Zurück zum Zitat R. Soua, P. Minet, A survey on energy efficient techniques in wireless sensor networks, in 2011 4th Joint IFIP Wireless and Mobile Networking Conference (IEEE, 2011), pp. 1–9 R. Soua, P. Minet, A survey on energy efficient techniques in wireless sensor networks, in 2011 4th Joint IFIP Wireless and Mobile Networking Conference (IEEE, 2011), pp. 1–9
29.
Zurück zum Zitat T. Aneeth, R. Jayabarathi, Energy-efficient communication in wireless sensor network for precision farming, in Artificial Intelligence and Evolutionary Computations in Engineering Systems (Springer, 2016), pp. 417–427 T. Aneeth, R. Jayabarathi, Energy-efficient communication in wireless sensor network for precision farming, in Artificial Intelligence and Evolutionary Computations in Engineering Systems (Springer, 2016), pp. 417–427
30.
Zurück zum Zitat I. Ragoler, Y. Matias, N. Aviram, Adaptive probing and communication in sensor networks, in International Conference on Ad-Hoc Networks and Wireless (Springer, 2004), pp. 280–293 I. Ragoler, Y. Matias, N. Aviram, Adaptive probing and communication in sensor networks, in International Conference on Ad-Hoc Networks and Wireless (Springer, 2004), pp. 280–293
31.
Zurück zum Zitat D.J. McCorrie, E. Gaura, K. Burnham, N. Poole, R. Hazelden, Predictive data reduction in wireless sensor networks using selective filtering for engine monitoring, in Wireless Sensor and Mobile Ad-Hoc Networks. (Springer, 2015), pp. 129–148 D.J. McCorrie, E. Gaura, K. Burnham, N. Poole, R. Hazelden, Predictive data reduction in wireless sensor networks using selective filtering for engine monitoring, in Wireless Sensor and Mobile Ad-Hoc Networks. (Springer, 2015), pp. 129–148
32.
Zurück zum Zitat A. Abd Manaf, S. Sahibuddin, R. Ahmad, S. M. Daud, E. El-Qawasmeh, Informatics engineering and information science, in Conference proceedings ICIEIS (Springer, 2011), pp. 42 A. Abd Manaf, S. Sahibuddin, R. Ahmad, S. M. Daud, E. El-Qawasmeh, Informatics engineering and information science, in Conference proceedings ICIEIS (Springer, 2011), pp. 42
33.
Zurück zum Zitat J. Shen, A. Wang, C. Wang, P. C. Hung, C.-F. Lai, An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access 5, 18 469–18 479 (2017) J. Shen, A. Wang, C. Wang, P. C. Hung, C.-F. Lai, An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access 5, 18 469–18 479 (2017)
34.
Zurück zum Zitat I. Sohn, J.-H. Lee, S.H. Lee, Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks. IEEE Commun. Lett. 20(3), 558–561 (2016)CrossRef I. Sohn, J.-H. Lee, S.H. Lee, Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks. IEEE Commun. Lett. 20(3), 558–561 (2016)CrossRef
35.
Zurück zum Zitat S.S. Aswanth, A. Gokulakannan, C.S. Sibi, R. Ramanathan, Routing in wireless sensor network based on swarm intelligence, in 2019 3rd International Conference on Trends in Electronics and Informatics (IEEE, 2019), pp. 502–508 S.S. Aswanth, A. Gokulakannan, C.S. Sibi, R. Ramanathan, Routing in wireless sensor network based on swarm intelligence, in 2019 3rd International Conference on Trends in Electronics and Informatics (IEEE, 2019), pp. 502–508
36.
Zurück zum Zitat D. Sharma, A.P. Bhondekar, Traffic and energy aware routing for heterogeneous wireless sensor networks. IEEE Commun. Lett. 22(8), 1608–1611 (2018)CrossRef D. Sharma, A.P. Bhondekar, Traffic and energy aware routing for heterogeneous wireless sensor networks. IEEE Commun. Lett. 22(8), 1608–1611 (2018)CrossRef
37.
Zurück zum Zitat T. Kaur, D. Kumar, Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sens. J. 18(11), 4614–4622 (2018)CrossRef T. Kaur, D. Kumar, Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sens. J. 18(11), 4614–4622 (2018)CrossRef
38.
Zurück zum Zitat T.M. Behera, U.C. Samal, S.K. Mohapatra, Energy-efficient modified leach protocol for IoT application. IET Wireless Sens. Syst. 8(5), 223–228 (2018)CrossRef T.M. Behera, U.C. Samal, S.K. Mohapatra, Energy-efficient modified leach protocol for IoT application. IET Wireless Sens. Syst. 8(5), 223–228 (2018)CrossRef
39.
Zurück zum Zitat D. Sharma, A. Ojha, A.P. Bhondekar, Heterogeneity consideration in wireless sensor networks routing algorithms: a review. J. Supercomput. 75(5), 2341–2394 (2019)CrossRef D. Sharma, A. Ojha, A.P. Bhondekar, Heterogeneity consideration in wireless sensor networks routing algorithms: a review. J. Supercomput. 75(5), 2341–2394 (2019)CrossRef
40.
Zurück zum Zitat S. Pal, D. Bhattacharyya, G.S. Tomar, T.-h. Kim, Wireless sensor networks and its routing protocols: a comparative study, in 2010 International Conference on Computational Intelligence and Communication Networks (2010), pp. 314–319 S. Pal, D. Bhattacharyya, G.S. Tomar, T.-h. Kim, Wireless sensor networks and its routing protocols: a comparative study, in 2010 International Conference on Computational Intelligence and Communication Networks (2010), pp. 314–319
41.
Zurück zum Zitat R.N. Jadoon, W. Zhou, W. Jadoon, I. Ahmed Khan, Rarz: ring-zone based routing protocol for wireless sensor networks. Appl. Sci. 8(7), 1023, (2018) R.N. Jadoon, W. Zhou, W. Jadoon, I. Ahmed Khan, Rarz: ring-zone based routing protocol for wireless sensor networks. Appl. Sci. 8(7), 1023, (2018)
42.
Zurück zum Zitat S. Tanwar, S. Tyagi, N. Kumar, M.S. Obaidat, La-mhr: learning automata based multilevel heterogeneous routing for opportunistic shared spectrum access to enhance lifetime of WSN. IEEE Syst. J. 13(1), 313–323 (2018)CrossRef S. Tanwar, S. Tyagi, N. Kumar, M.S. Obaidat, La-mhr: learning automata based multilevel heterogeneous routing for opportunistic shared spectrum access to enhance lifetime of WSN. IEEE Syst. J. 13(1), 313–323 (2018)CrossRef
43.
Zurück zum Zitat M. Tarhani, Y.S. Kavian, S. Siavoshi, Seech: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sens. J. 14(11), 3944–3954 (2014)CrossRef M. Tarhani, Y.S. Kavian, S. Siavoshi, Seech: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sens. J. 14(11), 3944–3954 (2014)CrossRef
44.
Zurück zum Zitat X. Liu, Atypical hierarchical routing protocols for wireless sensor networks: A review. IEEE Sens. J. 15(10), 5372–5383 (2015)CrossRef X. Liu, Atypical hierarchical routing protocols for wireless sensor networks: A review. IEEE Sens. J. 15(10), 5372–5383 (2015)CrossRef
45.
Zurück zum Zitat A.C.J. Malar, M. Kowsigan, N. Krishnamoorthy, S. Karthick, E. Prabhu, K. Venkatachalam, Multi constraints applied energy efficient routing technique based on ant colony optimization used for disaster resilient location detection in mobile ad-hoc network. J. Ambient Intell. Humaniz. Comput. 1–11 (2020) A.C.J. Malar, M. Kowsigan, N. Krishnamoorthy, S. Karthick, E. Prabhu, K. Venkatachalam, Multi constraints applied energy efficient routing technique based on ant colony optimization used for disaster resilient location detection in mobile ad-hoc network. J. Ambient Intell. Humaniz. Comput. 1–11 (2020)
46.
Zurück zum Zitat B. Nazir, H. Hasbullah, Energy efficient and QoS aware routing protocol for clustered wireless sensor network. Comput. Electr. Eng. 39(8), 2425–2441 (2013)CrossRef B. Nazir, H. Hasbullah, Energy efficient and QoS aware routing protocol for clustered wireless sensor network. Comput. Electr. Eng. 39(8), 2425–2441 (2013)CrossRef
47.
Zurück zum Zitat T. He, J.A. Stankovic, C. Lu, T. Abdelzaher, Speed: A stateless protocol for real-time communication in sensor networks, in 23rd International Conference on Distributed Computing Systems, 2003. Proceedings (IEEE, 2003), pp. 46–55 T. He, J.A. Stankovic, C. Lu, T. Abdelzaher, Speed: A stateless protocol for real-time communication in sensor networks, in 23rd International Conference on Distributed Computing Systems, 2003. Proceedings (IEEE, 2003), pp. 46–55
48.
Zurück zum Zitat S. Vidhya, S. Mathi, Investigation of next generation internet protocol mobility-assisted solutions for low power and lossy networks. Procedia comput. Sci. 143, 349–359 (2018)CrossRef S. Vidhya, S. Mathi, Investigation of next generation internet protocol mobility-assisted solutions for low power and lossy networks. Procedia comput. Sci. 143, 349–359 (2018)CrossRef
49.
Zurück zum Zitat L. Cheng, J. Niu, J. Cao, S.K. Das, Y. Gu, Qos aware geographic opportunistic routing in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(7), 1864–1875 (2013)CrossRef L. Cheng, J. Niu, J. Cao, S.K. Das, Y. Gu, Qos aware geographic opportunistic routing in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(7), 1864–1875 (2013)CrossRef
50.
Zurück zum Zitat A. Cerpa, D. Estrin, Ascent: Adaptive self-configuring sensor networks topologies. IEEE Trans. Mob. Comput. 3(3), 272–285 (2004)CrossRef A. Cerpa, D. Estrin, Ascent: Adaptive self-configuring sensor networks topologies. IEEE Trans. Mob. Comput. 3(3), 272–285 (2004)CrossRef
51.
Zurück zum Zitat F. Cuomo, A. Abbagnale, E. Cipollone, Cross-layer network formation for energy-efficient IEEE 802.15. 4/zigbee wireless sensor networks. Ad Hoc Netw. 11(2), 672–686 (2013) F. Cuomo, A. Abbagnale, E. Cipollone, Cross-layer network formation for energy-efficient IEEE 802.15. 4/zigbee wireless sensor networks. Ad Hoc Netw. 11(2), 672–686 (2013)
52.
Zurück zum Zitat M. Li, B. Yang, A survey on topology issues in wireless sensor network. in ICWN. Citeseer (2006), pp. 503 M. Li, B. Yang, A survey on topology issues in wireless sensor network. in ICWN. Citeseer (2006), pp. 503
53.
Zurück zum Zitat J. Deng, Y.S. Han, W.B. Heinzelman, P.K. Varshney, Scheduling sleeping nodes in high density cluster-based sensor networks. Mob. Net. Appl. 10(6), 825–835 (2005)CrossRef J. Deng, Y.S. Han, W.B. Heinzelman, P.K. Varshney, Scheduling sleeping nodes in high density cluster-based sensor networks. Mob. Net. Appl. 10(6), 825–835 (2005)CrossRef
54.
Zurück zum Zitat R.S. Bhadoria, G.S. Tomar, S. Kang, Proficient energy consumption aware model in wireless sensor network. Int. J. Multimedia Ubiquit. Eng. 9(5), 27–36 (2014)CrossRef R.S. Bhadoria, G.S. Tomar, S. Kang, Proficient energy consumption aware model in wireless sensor network. Int. J. Multimedia Ubiquit. Eng. 9(5), 27–36 (2014)CrossRef
55.
Zurück zum Zitat P. Lin, C. Qiao, X. Wang, Medium access control with a dynamic duty cycle for sensor networks, in 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No. 04TH8733), vol. 3, (IEEE, 2004), pp. 1534–1539 P. Lin, C. Qiao, X. Wang, Medium access control with a dynamic duty cycle for sensor networks, in 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No. 04TH8733), vol. 3, (IEEE, 2004), pp. 1534–1539
56.
Zurück zum Zitat S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli, Z.M. Wang, Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Netw. 14(6), 831–858 (2008)CrossRef S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli, Z.M. Wang, Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Netw. 14(6), 831–858 (2008)CrossRef
57.
Zurück zum Zitat W. Zaho, A message ferrying approach for data delivery in sparse mobile ad hoc networks-macro, in proceedings of MobiHoc’04 (2004) W. Zaho, A message ferrying approach for data delivery in sparse mobile ad hoc networks-macro, in proceedings of MobiHoc’04 (2004)
58.
Zurück zum Zitat M. Krunz, A. Muqattash, S.J. Lee, Transmission power control in wireless ad hoc networks: challenges, solutions and open issues. IEEE Netw. 18(5), 8–14 (2004)CrossRef M. Krunz, A. Muqattash, S.J. Lee, Transmission power control in wireless ad hoc networks: challenges, solutions and open issues. IEEE Netw. 18(5), 8–14 (2004)CrossRef
59.
Zurück zum Zitat S. Blakeway, A. Kirpichnikova, M. Schaeffer, E.L. Secco, Transmission power and effects on energy consumption and performance in manet. EAI Endorsed Trans. Mob. Commun. Appl. 19(16) 2019 S. Blakeway, A. Kirpichnikova, M. Schaeffer, E.L. Secco, Transmission power and effects on energy consumption and performance in manet. EAI Endorsed Trans. Mob. Commun. Appl. 19(16) 2019
60.
Zurück zum Zitat J. Gomez, A.T. Campbell, Variable-range transmission power control in wireless ad hoc networks. IEEE Trans. Mob. Comput. 6(1), 87–99 (2006)CrossRef J. Gomez, A.T. Campbell, Variable-range transmission power control in wireless ad hoc networks. IEEE Trans. Mob. Comput. 6(1), 87–99 (2006)CrossRef
61.
Zurück zum Zitat A. Spyropoulos C.S. Raghavendra, Energy efficient communications in ad hoc networks using directional antennas, in Proceedings. 21 Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1, (2002), pp. 220–228. A. Spyropoulos C.S. Raghavendra, Energy efficient communications in ad hoc networks using directional antennas, in Proceedings. 21 Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1, (2002), pp. 220–228.
62.
Zurück zum Zitat D. Seth, S. Patnaik, S. Pal, EPCM–an efficient power controlled mac protocol for mobile ad hoc network. Int. J. Electron. 101(10), 1443–1457 (2014)CrossRef D. Seth, S. Patnaik, S. Pal, EPCM–an efficient power controlled mac protocol for mobile ad hoc network. Int. J. Electron. 101(10), 1443–1457 (2014)CrossRef
63.
Zurück zum Zitat L. Femila V. Vijayarangan, Transmission power control in mobile ad hoc network using network coding and co-operative communication, in 2014 international conference on communication and network technologies. (IEEE, 2014), pp. 129–133 L. Femila V. Vijayarangan, Transmission power control in mobile ad hoc network using network coding and co-operative communication, in 2014 international conference on communication and network technologies. (IEEE, 2014), pp. 129–133
64.
Zurück zum Zitat A.S. Ahmed, T.S. Kumaran, S.S.A. Syed, S. Subburam, Cross-layer design approach for power control in mobile ad hoc networks. Egypt. Inform. J. 16(1), 1–7 (2015)CrossRef A.S. Ahmed, T.S. Kumaran, S.S.A. Syed, S. Subburam, Cross-layer design approach for power control in mobile ad hoc networks. Egypt. Inform. J. 16(1), 1–7 (2015)CrossRef
65.
Zurück zum Zitat D.M. Dobkin, B. Aboussouan Low power wi-fi™ (IEEE802. 11) for IP Smart Objects. GainSpan Corporation (2009) D.M. Dobkin, B. Aboussouan Low power wi-fi™ (IEEE802. 11) for IP Smart Objects. GainSpan Corporation (2009)
66.
Zurück zum Zitat J. Tosi, M. Taffoni, R. Santacatterina, D. Sannino, Formica, performance evaluation of bluetooth low energy: A systematic review. Sensors 17(12), 2898 (2017) J. Tosi, M. Taffoni, R. Santacatterina, D. Sannino, Formica, performance evaluation of bluetooth low energy: A systematic review. Sensors 17(12), 2898 (2017)
68.
Zurück zum Zitat C.W. Badenhop, S.R. Graham, B.W. Ramsey, B.E. Mullins, L.O. Mailloux, The z-wave routing protocol and its security implications. Comput. Secur. 68, 112–129 (2017) C.W. Badenhop, S.R. Graham, B.W. Ramsey, B.E. Mullins, L.O. Mailloux, The z-wave routing protocol and its security implications. Comput. Secur. 68, 112–129 (2017)
69.
Zurück zum Zitat J. Haxhibeqiri, E. De Poorter, I. Moerman, J. Hoebeke, A survey of LoRaWAN for IoT: From technology to application. Sensors 18(11), 3995 (2018)CrossRef J. Haxhibeqiri, E. De Poorter, I. Moerman, J. Hoebeke, A survey of LoRaWAN for IoT: From technology to application. Sensors 18(11), 3995 (2018)CrossRef
Metadaten
Titel
Investigations on Power-Aware Solutions in Low Power Sensor Networks
verfasst von
S. S. Vidhya
Senthilkumar Mathi
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-5529-6_69