Skip to main content
Erschienen in: Machine Vision and Applications 3/2014

01.04.2014 | Original Paper

A feature selection method using improved regularized linear discriminant analysis

verfasst von: Alok Sharma, Kuldip K. Paliwal, Seiya Imoto, Satoru Miyano

Erschienen in: Machine Vision and Applications | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investigation of genes, using data analysis and computer-based methods, has gained widespread attention in solving human cancer classification problem. DNA microarray gene expression datasets are readily utilized for this purpose. In this paper, we propose a feature selection method using improved regularized linear discriminant analysis technique to select important genes, crucial for human cancer classification problem. The experiment is conducted on several DNA microarray gene expression datasets and promising results are obtained when compared with several other existing feature selection methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
SVM-RFE [15] is a wrapper-based method. It is an iterative method which works backward from an initial set of features. The SVM aims to find maximum margin hyperplane between the two classes to minimize classification error using some kernel function.
 
2
Since RLDA or Improved RLDA is a method for solving small sample size (SSS) problem, the value of q has to be in (\(n,d\)).
 
3
Most of the datasets are downloaded from the Kent Ridge Bio-medical Dataset (KRBD) (http://​datam.​i2r.​a-star.​edu.​sg/​datasets/​krbd/​). The datasets are transformed or reformatted and made available by KRBD repository and we have used them without any further preprocessing. Some datasets which are not available on KRBD repository are downloaded and directly used from respective authors’ supplement link. The URL addresses for all the datasets are given in the Reference Section.
 
4
The cross-validation-based results are shown in Appendix A. The comparison of improved RLDA with different values of regularization parameter has been shown in Appendix B.
Table 2
The classification accuracy of various feature selection methods using four distinct classifiers on the SRBCT dataset
 
J4.8 (%)
Naïve Bayes (%)
kNN (%)
SVM pairwise (%)
Baseline accuracy
37
37
37
37
Information gain
68
68
90
90
Twoing rule
64
73
86
82
Sum minority
68
68
90
86
Max minority
46
78
90
90
Gini index
64
78
90
90
Sum of variances
54
64
90
86
t-statistic
54
64
90
86
One-dimensional SVM
54
64
90
86
Lasso
90
70
80
75
Filter MRMR
65
35
55
85
Improved RLDA
75
90
95
100
Table 3
The classification accuracy of various feature selection methods using four distinct classifiers on the MLL dataset
 
J4.8 (%)
Naïve Bayes (%)
kNN (%)
SVM pairwise (%)
Baseline accuracy
35
35
35
35
Information gain
60
74
86
100
Twoing rule
60
86
86
100
Sum minority
68
26
80
80
Max minority
74
34
74
80
Gini index
60
68
86
100
Sum of variances
60
54
86
100
t-statistic
60
54
86
100
One-dimensional SVM
60
54
86
100
Lasso
87
100
93
93
Filter MRMR
100
100
93
100
Improved RLDA
100
93
100
100
Table 4
The classification accuracy of various feature selection methods using four distinct classifiers on the Acute Leukemia dataset
 
J4.8 (%)
Naïve Bayes (%)
kNN (%)
SVM pairwise (%)
Baseline accuracy
71
71
71
71
Information gain
91
100
97
97
Twoing rule
91
97
97
97
Sum minority
91
97
97
97
Max minority
91
97
97
97
Gini index
91
97
97
97
Sum of variances
91
97
97
97
t-statistic
91
100
97
97
One-dimensional SVM
91
85
88
97
Lasso
91
94
85
91
Filter MRMR
65
71
74
86
Improved RLDA
94
94
85
100
 
5
Note that for all the feature selection methods except Lasso method the number of selected features is 150 (in Tables 2, 3 and 4). The Lasso method itself obtains the optimal number of selected features and therefore cannot be adjusted for a predefined number of selected features.
 
6
Ingenuity Pathway Analysis (IPA) (http://​www.​ingenuity.​com) is a software that helps researchers to model, analyze, and understand the complex biological and chemical systems at the core of life science research. IPA has been broadly adopted by the life science research community. IPA helps to understand complex ’omics data at multiple levels by integrating data from a variety of experimental platforms and providing insight into the molecular and chemical interactions, cellular phenotypes, and disease processes of the system. IPA provides insight into the causes of observed gene expression changes and into the predicted downstream biological effects of those changes. Even if the experimental data is not available, IPA can be used to intelligently search the Ingenuity Knowledge Base for information on genes, proteins, chemicals, drugs, and molecular relationships to build biological models or to get up to speed in a relevant area of research. IPA provides the right biological context to facilitate informed decision-making, advance research project design, and generate new testable hypotheses.
 
Literatur
1.
Zurück zum Zitat Anton, H.: Calculus. Wiley, New York (1995) Anton, H.: Calculus. Wiley, New York (1995)
3.
Zurück zum Zitat Banerjee, M., Mitra, S., Banka, H.: Evolutinary-rough feature selection in gene expression data. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37, 622–632 (2007)CrossRef Banerjee, M., Mitra, S., Banka, H.: Evolutinary-rough feature selection in gene expression data. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37, 622–632 (2007)CrossRef
4.
Zurück zum Zitat Cong G., Tan K.-L., Tung A.K.H., Xu X.: Mining top-k covering rule groups for gene expression data. In: The ACM SIGMOD International Conference on Management of Data, pp. 670–681 (2005) Cong G., Tan K.-L., Tung A.K.H., Xu X.: Mining top-k covering rule groups for gene expression data. In: The ACM SIGMOD International Conference on Management of Data, pp. 670–681 (2005)
5.
Zurück zum Zitat Dai, D.Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recognit. 36(3), 845–847 (2003)CrossRefMATH Dai, D.Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recognit. 36(3), 845–847 (2003)CrossRefMATH
6.
Zurück zum Zitat Dai, D.Q., Yuen, P.C.: Face recognition by regularized discriminant analysis. IEEE Trans. SMC 37(4), 1080–1085 (2007) Dai, D.Q., Yuen, P.C.: Face recognition by regularized discriminant analysis. IEEE Trans. SMC 37(4), 1080–1085 (2007)
7.
Zurück zum Zitat Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 523–529 (2003) Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 523–529 (2003)
8.
Zurück zum Zitat Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATH Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATH
9.
Zurück zum Zitat Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discriminant methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87 (2002)CrossRefMATHMathSciNet Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discriminant methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87 (2002)CrossRefMATHMathSciNet
10.
Zurück zum Zitat Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)CrossRef Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)CrossRef
11.
Zurück zum Zitat Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)MATH Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)MATH
12.
Zurück zum Zitat Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)CrossRef Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)CrossRef
13.
Zurück zum Zitat Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). [Data Source: http://datam.i2r.a-star.edu.sg/datasets/krbd/] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). [Data Source: http://​datam.​i2r.​a-star.​edu.​sg/​datasets/​krbd/​]
14.
Zurück zum Zitat Guo, Y., Hastie, T., Tibshirani, R.: Regularized discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2007)CrossRefMATH Guo, Y., Hastie, T., Tibshirani, R.: Regularized discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2007)CrossRefMATH
15.
Zurück zum Zitat Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)CrossRefMATH Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)CrossRefMATH
16.
Zurück zum Zitat Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, NY (2001)CrossRefMATH Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, NY (2001)CrossRefMATH
17.
Zurück zum Zitat Huang, R., Liu, Q., Lu, H., Ma, S.: Solving the small sample size problem of LDA. Proc. ICPR 3, 29–32 (2002) Huang, R., Liu, Q., Lu, H., Ma, S.: Solving the small sample size problem of LDA. Proc. ICPR 3, 29–32 (2002)
18.
Zurück zum Zitat Huang, Y., Xu, D., Nie, F.: Semi-supervised dimension reduction using trace ratio criterion. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 519–526 (2012)CrossRef Huang, Y., Xu, D., Nie, F.: Semi-supervised dimension reduction using trace ratio criterion. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 519–526 (2012)CrossRef
19.
Zurück zum Zitat Huang, Y., Xu, D., Nie, F.: Patch distribution compatible semi-supervised dimension reduction for face and human gait recognition. IEEE Trans. Circuits Syst. Video Technol. 22(3), 479–488 (2012)CrossRef Huang, Y., Xu, D., Nie, F.: Patch distribution compatible semi-supervised dimension reduction for face and human gait recognition. IEEE Trans. Circuits Syst. Video Technol. 22(3), 479–488 (2012)CrossRef
20.
Zurück zum Zitat Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural network. Nat. Med. 7, 673–679 (2001). [Data Source: http://research.nhgri.nih.gov/microarray/Supplement/] Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural network. Nat. Med. 7, 673–679 (2001). [Data Source: http://​research.​nhgri.​nih.​gov/​microarray/​Supplement/​]
21.
Zurück zum Zitat Li, J., Wong, L.: Using rules to analyse bio-medical data: a comparison between C4.5 and PCL. In: Advances in Web-Age Information Management, pp. 254–265. Springer, Berlin (2003) Li, J., Wong, L.: Using rules to analyse bio-medical data: a comparison between C4.5 and PCL. In: Advances in Web-Age Information Management, pp. 254–265. Springer, Berlin (2003)
22.
Zurück zum Zitat Liu, J., Chen, S.C., Tan, X.Y.: Efficient pseudo-inverse linear discriminant analysis and its nonlinear form for face recognition. Int. J. Patt. Recogn. Artif. Intell. 21(8), 1265–1278 (2007)CrossRef Liu, J., Chen, S.C., Tan, X.Y.: Efficient pseudo-inverse linear discriminant analysis and its nonlinear form for face recognition. Int. J. Patt. Recogn. Artif. Intell. 21(8), 1265–1278 (2007)CrossRef
23.
Zurück zum Zitat Nie, F., Huang, H., Cai X., Ding, C.: Efficient and robust feature selection via joint \(l_{2,1} \)-norms minimization, NIPS (2010) Nie, F., Huang, H., Cai X., Ding, C.: Efficient and robust feature selection via joint \(l_{2,1} \)-norms minimization, NIPS (2010)
24.
Zurück zum Zitat Pan, W.: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554 (2002)CrossRef Pan, W.: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554 (2002)CrossRef
25.
Zurück zum Zitat Pavlidis, P., Weston, J., Cai, J. and Grundy, W.N.: Gene functional classification from heterogeneous data. In: International Conference on Computational Biology, pp. 249–255 (2001) Pavlidis, P., Weston, J., Cai, J. and Grundy, W.N.: Gene functional classification from heterogeneous data. In: International Conference on Computational Biology, pp. 249–255 (2001)
26.
Zurück zum Zitat Peng, H., Long, F., Dong, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef Peng, H., Long, F., Dong, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef
27.
Zurück zum Zitat Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRef Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRef
28.
Zurück zum Zitat Sharma, A., Imoto, S., Miyano, S.: A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Computat. Biol. Bioinf. 9(3), 754–764 (2012)CrossRef Sharma, A., Imoto, S., Miyano, S.: A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Computat. Biol. Bioinf. 9(3), 754–764 (2012)CrossRef
29.
Zurück zum Zitat Sharma, A., Imoto, S., Miyano, S.: A between-class overlapping filter-based method for transcriptome data analysis. J. Bioinf. Computat. Biol. 10(5), 1250010-1–1250010-20 (2012) Sharma, A., Imoto, S., Miyano, S.: A between-class overlapping filter-based method for transcriptome data analysis. J. Bioinf. Computat. Biol. 10(5), 1250010-1–1250010-20 (2012)
30.
31.
Zurück zum Zitat Sharma, A., Koh, C.H., Imoto, S., Miyano, S.: Strategy of finding optimal number of features on gene expression data. IEE. Electron. Lett. 47(8), 480–482 (2011)CrossRef Sharma, A., Koh, C.H., Imoto, S., Miyano, S.: Strategy of finding optimal number of features on gene expression data. IEE. Electron. Lett. 47(8), 480–482 (2011)CrossRef
32.
Zurück zum Zitat Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognit. Lett. 28(10), 1151–1155 (2007)CrossRef Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognit. Lett. 28(10), 1151–1155 (2007)CrossRef
33.
Zurück zum Zitat Sharma, A., Paliwal, K.K.: Rotational linear discriminant analysis for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 20(10), 1336–1347 (2008)CrossRef Sharma, A., Paliwal, K.K.: Rotational linear discriminant analysis for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 20(10), 1336–1347 (2008)CrossRef
34.
Zurück zum Zitat Sharma, A., Paliwal, K.K.: A gradient linear discriminant analysis for small sample sized problem. Neural Process. Lett. 27(1), 17–24 (2008)CrossRef Sharma, A., Paliwal, K.K.: A gradient linear discriminant analysis for small sample sized problem. Neural Process. Lett. 27(1), 17–24 (2008)CrossRef
35.
Zurück zum Zitat Sharma, A., Paliwal, K.K.: A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices. Pattern Recognit. 45, 2205–2213 (2012)CrossRefMATH Sharma, A., Paliwal, K.K.: A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices. Pattern Recognit. 45, 2205–2213 (2012)CrossRefMATH
36.
Zurück zum Zitat Sharma, A., Lyons, J., Dehzangi, A., Paliwal, K.K.: A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition. J. Theoret. Biol. 320(7), 41–46 (2013)CrossRefMathSciNet Sharma, A., Lyons, J., Dehzangi, A., Paliwal, K.K.: A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition. J. Theoret. Biol. 320(7), 41–46 (2013)CrossRefMathSciNet
37.
Zurück zum Zitat Sharma, A., Paliwal, K.K., Imoto, S., Miyano, S., Sharma, V., Ananthanarayanan, R.: A feature selection method using fixed-point algorithm for DNA microarray gene expression data. Int. J. Knowl. Based Intell. Eng. Syst. (2013, accepted) Sharma, A., Paliwal, K.K., Imoto, S., Miyano, S., Sharma, V., Ananthanarayanan, R.: A feature selection method using fixed-point algorithm for DNA microarray gene expression data. Int. J. Knowl. Based Intell. Eng. Syst. (2013, accepted)
38.
Zurück zum Zitat Su, Y., Murali, T.M., Pavlovic, V., Kasif, S.: RankGene: identification of diagnostic genes based on expression data, Bioinformatics, pp. 1578–1579 (2003) Su, Y., Murali, T.M., Pavlovic, V., Kasif, S.: RankGene: identification of diagnostic genes based on expression data, Bioinformatics, pp. 1578–1579 (2003)
39.
Zurück zum Zitat Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Appl. Bioinf. 2(3 Suppl), S75–83 (2003) Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Appl. Bioinf. 2(3 Suppl), S75–83 (2003)
40.
Zurück zum Zitat Tao, L., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(14), 2429–2437 (2004) Tao, L., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(14), 2429–2437 (2004)
41.
Zurück zum Zitat Thomas, J., Olson, J.M., Tapscott, S.J., Zhao, L.P.: An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227–1236 (2001)CrossRef Thomas, J., Olson, J.M., Tapscott, S.J., Zhao, L.P.: An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227–1236 (2001)CrossRef
42.
Zurück zum Zitat Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)MATHMathSciNet Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)MATHMathSciNet
43.
Zurück zum Zitat Wang, A., Gehan, E.A.: Gene selection for microarray data analysis using principal component analysis. Stat. Med. 24, 2069–2087 (2005)CrossRefMathSciNet Wang, A., Gehan, E.A.: Gene selection for microarray data analysis using principal component analysis. Stat. Med. 24, 2069–2087 (2005)CrossRefMathSciNet
44.
Zurück zum Zitat Wu, G., Xu, W., Zhang, Y., Wei, Y.: A preconditioned conjugate gradient algorithm fo GeneRank with application to microarray data mining. Data Mining Knowl. Discov. (2011). doi:10.1007/s10618-011-0245-7 Wu, G., Xu, W., Zhang, Y., Wei, Y.: A preconditioned conjugate gradient algorithm fo GeneRank with application to microarray data mining. Data Mining Knowl. Discov. (2011). doi:10.​1007/​s10618-011-0245-7
45.
Zurück zum Zitat Xu, D., Yan, S.: Semi-supervised bilinear subspace learning. IEEE Trans. Image Process. 18(7), 1671–1676 (2009)CrossRefMathSciNet Xu, D., Yan, S.: Semi-supervised bilinear subspace learning. IEEE Trans. Image Process. 18(7), 1671–1676 (2009)CrossRefMathSciNet
46.
Zurück zum Zitat Zhou, L., Wang, L., Shen, C., Barnes, N.: Hippocampal shape classification using redundancy constrained feature selection. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010. In: Lecture Notes in Computer Science, vol. 6362, pp. 266–273. Springer, Berlin (2010) Zhou, L., Wang, L., Shen, C., Barnes, N.: Hippocampal shape classification using redundancy constrained feature selection. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010. In: Lecture Notes in Computer Science, vol. 6362, pp. 266–273. Springer, Berlin (2010)
Metadaten
Titel
A feature selection method using improved regularized linear discriminant analysis
verfasst von
Alok Sharma
Kuldip K. Paliwal
Seiya Imoto
Satoru Miyano
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Machine Vision and Applications / Ausgabe 3/2014
Print ISSN: 0932-8092
Elektronische ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-013-0577-y

Weitere Artikel der Ausgabe 3/2014

Machine Vision and Applications 3/2014 Zur Ausgabe

Premium Partner