Skip to main content
Erschienen in: Experiments in Fluids 4/2012

01.10.2012 | Research Article

A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

verfasst von: L. Djenidi, R. A. Antonia

Erschienen in: Experiments in Fluids | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate \( \left\langle \varepsilon \right\rangle \) in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301–305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity ν and \( \left\langle \varepsilon \right\rangle \) at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a −5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of \( \left\langle \varepsilon \right\rangle \) in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antonia R, Burattini P (2006) Approach to the 4/5 law in homogeneous isotropic turbulence. J Fluid Mech 550:175–184MATHCrossRef Antonia R, Burattini P (2006) Approach to the 4/5 law in homogeneous isotropic turbulence. J Fluid Mech 550:175–184MATHCrossRef
Zurück zum Zitat Antonia R, Orlandi P, Zhou T (2002) Assessment of a three-component vorticity probe in decaying turbulence. Exp Fluids 33:384–390 Antonia R, Orlandi P, Zhou T (2002) Assessment of a three-component vorticity probe in decaying turbulence. Exp Fluids 33:384–390
Zurück zum Zitat Antonia R, Ould-Rouis M, Anselmet F, Zhu Y (1997) Analogy between prediction of Kolmogorov and Yaglom. J Fluid Mech 332:395–409MATH Antonia R, Ould-Rouis M, Anselmet F, Zhu Y (1997) Analogy between prediction of Kolmogorov and Yaglom. J Fluid Mech 332:395–409MATH
Zurück zum Zitat Antonia R, Zhou T, Zhu Y (1998) Three-component vorticity measurements in a turbulent grid flow. J Fluid Mech 374:29–57MATHCrossRef Antonia R, Zhou T, Zhu Y (1998) Three-component vorticity measurements in a turbulent grid flow. J Fluid Mech 374:29–57MATHCrossRef
Zurück zum Zitat Antonia RA, Abe H (2009) Inertial range similarity for velocity and scalar spectra in a turbulent channel flow. In: Hanjalic K, Nagano Y, Jakirlic S (eds) Turbulence, heat and mass transfer, vol 6. Proceedings of the sixth international symposium on turbulence, heat and mass transfer. Bergell House, Rome, Italy, pp 119–122 Antonia RA, Abe H (2009) Inertial range similarity for velocity and scalar spectra in a turbulent channel flow. In: Hanjalic K, Nagano Y, Jakirlic S (eds) Turbulence, heat and mass transfer, vol 6. Proceedings of the sixth international symposium on turbulence, heat and mass transfer. Bergell House, Rome, Italy, pp 119–122
Zurück zum Zitat Antonia RA, Abe H, Kawamura H (2009) Analogy between velocity and scalar fields in a turbulent channel flow. J Fluid Mech 62:241–268CrossRef Antonia RA, Abe H, Kawamura H (2009) Analogy between velocity and scalar fields in a turbulent channel flow. J Fluid Mech 62:241–268CrossRef
Zurück zum Zitat Antonia RA, Kim J, Browne LWB (1991) Some characteristics of small scale turbulence in a turbulent duct flow. J Fluid Mech 233:369–388MATHCrossRef Antonia RA, Kim J, Browne LWB (1991) Some characteristics of small scale turbulence in a turbulent duct flow. J Fluid Mech 233:369–388MATHCrossRef
Zurück zum Zitat Antonia RA, Lavoie P, Djenidi L, Benaissa A (2010) Effect of a small axisymmetric contraction on grid turbulence. Exp Fluids 49:3–10CrossRef Antonia RA, Lavoie P, Djenidi L, Benaissa A (2010) Effect of a small axisymmetric contraction on grid turbulence. Exp Fluids 49:3–10CrossRef
Zurück zum Zitat Antonia RA, Smalley RJ, Zhou T, Anselmet F, Danaila L (2004) Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence. Phys Rev E 69(4):016305CrossRef Antonia RA, Smalley RJ, Zhou T, Anselmet F, Danaila L (2004) Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence. Phys Rev E 69(4):016305CrossRef
Zurück zum Zitat Champagne F (1978) The fine-scale structure of the turbulent velocity field. J Fluid Mech 86:67–108CrossRef Champagne F (1978) The fine-scale structure of the turbulent velocity field. J Fluid Mech 86:67–108CrossRef
Zurück zum Zitat Chin CC, Hutchins N, Ooi ASH, Marusic I (2009) Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. Meas Sci Technol 20:115401CrossRef Chin CC, Hutchins N, Ooi ASH, Marusic I (2009) Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. Meas Sci Technol 20:115401CrossRef
Zurück zum Zitat Chin CC, Hutchins N, Ooi ASH, Marusic I (2011) Spatial resolution correction for hot-wire anemometry in wall turbulence. Exp Fluids 50:1443–1453CrossRef Chin CC, Hutchins N, Ooi ASH, Marusic I (2011) Spatial resolution correction for hot-wire anemometry in wall turbulence. Exp Fluids 50:1443–1453CrossRef
Zurück zum Zitat Citriniti JH, George WK (1997) The reduction of spatial aliasing by long hot-wire anemometry probes. Exp Fluids 23:217–224CrossRef Citriniti JH, George WK (1997) The reduction of spatial aliasing by long hot-wire anemometry probes. Exp Fluids 23:217–224CrossRef
Zurück zum Zitat Clauser F (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51CrossRef Clauser F (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51CrossRef
Zurück zum Zitat Djenidi L (2006) Lattice–Boltzmann simulation of grid-generated turbulence. J Fluid Mech 552:13–35MATHCrossRef Djenidi L (2006) Lattice–Boltzmann simulation of grid-generated turbulence. J Fluid Mech 552:13–35MATHCrossRef
Zurück zum Zitat Djenidi L, Antonia RA, Rajagopalan S (2011) Scale by scale energy and temperature variance budgets in a turbulent mixing layer. In: Proceedings of the 7th turbulent shear flow phenomena, Ottawa, Canada Djenidi L, Antonia RA, Rajagopalan S (2011) Scale by scale energy and temperature variance budgets in a turbulent mixing layer. In: Proceedings of the 7th turbulent shear flow phenomena, Ottawa, Canada
Zurück zum Zitat Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers [1991 English translation In: Proceedings of the Royal Society of London. Series A 434,9–13]. C R (Doklady) Acad Sci R R SS, NS 30:301–305 Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers [1991 English translation In: Proceedings of the Royal Society of London. Series A 434,9–13]. C R (Doklady) Acad Sci R R SS, NS 30:301–305
Zurück zum Zitat Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420MATHCrossRef Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420MATHCrossRef
Zurück zum Zitat Mydlarsky L, Warhaft (1996) On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J Fluid Mech 585:395–420 Mydlarsky L, Warhaft (1996) On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J Fluid Mech 585:395–420
Zurück zum Zitat Nelkin M (1994) Universality and scaling in fully developed turbulence. Adv Phys 43:143–181CrossRef Nelkin M (1994) Universality and scaling in fully developed turbulence. Adv Phys 43:143–181CrossRef
Zurück zum Zitat Pao Y-H (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys Fluids 8(6):1063–1075CrossRef Pao Y-H (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys Fluids 8(6):1063–1075CrossRef
Zurück zum Zitat Pearson B, Antonia R (2001) Reynolds number dependence of turbulent velocity and pressure increments. J Fluid Mech 444:343–382MATHCrossRef Pearson B, Antonia R (2001) Reynolds number dependence of turbulent velocity and pressure increments. J Fluid Mech 444:343–382MATHCrossRef
Zurück zum Zitat Saddoughi SG, Veeravalli SV (1994) isotropy in turbulent boundary layer at high Reynolds number. J Fluid Mech 268:333–372CrossRef Saddoughi SG, Veeravalli SV (1994) isotropy in turbulent boundary layer at high Reynolds number. J Fluid Mech 268:333–372CrossRef
Zurück zum Zitat Smits AJ, Hultmark M, Vallikivi M, Rosenberg MJ, Bailey SC (2011) Pipe flow trubulence at extreme Reynolds numbers. In: Proceedings of the 7th international symposium on turbulence and shear flow phenomena, July 28–31, Ottawa, Canada Smits AJ, Hultmark M, Vallikivi M, Rosenberg MJ, Bailey SC (2011) Pipe flow trubulence at extreme Reynolds numbers. In: Proceedings of the 7th international symposium on turbulence and shear flow phenomena, July 28–31, Ottawa, Canada
Metadaten
Titel
A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate
verfasst von
L. Djenidi
R. A. Antonia
Publikationsdatum
01.10.2012
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 4/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1337-x

Weitere Artikel der Ausgabe 4/2012

Experiments in Fluids 4/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.