Skip to main content
Erschienen in: Experiments in Fluids 3/2013

01.03.2013 | Research Article

Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration

verfasst von: Kartik V. Bulusu, Michael W. Plesniak

Erschienen in: Experiments in Fluids | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Morphological changes in secondary flow structures due to a stent model were investigated under physiological inflow conditions. The stent model was inserted upstream of a 180° curved tube artery model. A carotid artery flow rate with its characteristic systolic and diastolic phases was supplied by a pump to drive a blood-analog working fluid. Phase-averaged, two-component, two-dimensional (2C-2D) particle image velocimeter measurements revealed the changing morphologies of these secondary flow structures. Continuous wavelet transforms provided an enhanced means to detect coherent secondary flow structures in this bio-inspired experimental study. A two-dimensional Ricker wavelet was used, and the optimal wavelet scale was determined using Shannon entropy as a measure of randomness in the wavelet-transformed vorticity fields. Planar secondary flow vortical structures at the 90° location in the curved tube were observed to exhibit distinct spatio-temporal characteristics different than the baseline flow without the stent. Flow patterns observed at the systolic peak comprised of early Lyne-type, along with a deformed Dean-type pair of ordered, coherent, high-circulation and counter-rotating vortical structures. Systolic deceleration was marked by the breakdown of large-scale coherent vortices into multiple, disordered, low-circulation, coherent vortical structures, indicating new transitional secondary flow morphologies. These multi-scale secondary flow morphologies arise due to the combination of imbalances in centrifugal and pressure forces, and stent-induced flow perturbations. The detailed flow physics associated with the formation of Dean and Lyne vortices are described in previous publications that have been cited in the manuscript. The secondary flow structures reported here are driven by similar fundamental mechanisms, but additionally contain more complicated effects, such as asymmetry and multiple strengths, that cannot be predicted from simple theories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8:1393–1398CrossRef Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8:1393–1398CrossRef
Zurück zum Zitat Barakat AI, Lieu DK (2003) Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys 38:323–344CrossRef Barakat AI, Lieu DK (2003) Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys 38:323–344CrossRef
Zurück zum Zitat Boiron O, Deplano V, Pelissier R (2007) Experimental and numerical studies on the starting effect on the secondary flow in a bend. J Fluid Mech 574:109–129MATHCrossRef Boiron O, Deplano V, Pelissier R (2007) Experimental and numerical studies on the starting effect on the secondary flow in a bend. J Fluid Mech 574:109–129MATHCrossRef
Zurück zum Zitat Budwig R (1994) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 17:350–355CrossRef Budwig R (1994) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 17:350–355CrossRef
Zurück zum Zitat Camussi R, Guj G (1997) Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures. J Fluid Mech 348:177–199MathSciNetCrossRef Camussi R, Guj G (1997) Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures. J Fluid Mech 348:177–199MathSciNetCrossRef
Zurück zum Zitat Charonko J, Karri S, Schmieg J, Prabhu S, Vlachos P (2009) In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann Biomed Eng 37(7):1310–1321CrossRef Charonko J, Karri S, Schmieg J, Prabhu S, Vlachos P (2009) In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann Biomed Eng 37(7):1310–1321CrossRef
Zurück zum Zitat Dean WR (1927) Note on the motion of a fluid in a curved pipe. Phil Mag 7:208–223 Dean WR (1927) Note on the motion of a fluid in a curved pipe. Phil Mag 7:208–223
Zurück zum Zitat Dean WR (1928) The streamline motion of a fluid in a curved pipe. Phil Mag 7:673–695 Dean WR (1928) The streamline motion of a fluid in a curved pipe. Phil Mag 7:673–695
Zurück zum Zitat Deutsch S, Tarbell JM, Manning KB, Rosenberg G, Fontaine AA (2006) Experimental fluid mechanics of pulsatile artificial blood pumps. Annu Rev Fluid Mech 38:65–86CrossRef Deutsch S, Tarbell JM, Manning KB, Rosenberg G, Fontaine AA (2006) Experimental fluid mechanics of pulsatile artificial blood pumps. Annu Rev Fluid Mech 38:65–86CrossRef
Zurück zum Zitat Duda SH, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen CD (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11(5):645–654CrossRef Duda SH, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen CD (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11(5):645–654CrossRef
Zurück zum Zitat Ekkad S, Han JC (1997) Detailed heat transfer distributions in two-pass square channels with rib turbulators. Int J Heat Mass Transf 40(11):2525–2537CrossRef Ekkad S, Han JC (1997) Detailed heat transfer distributions in two-pass square channels with rib turbulators. Int J Heat Mass Transf 40(11):2525–2537CrossRef
Zurück zum Zitat Evegren P, Fuchs L, Revstedt J (2010) On the secondary flow through bifurcating pipes. Phys Fluids 22(10):103,601CrossRef Evegren P, Fuchs L, Revstedt J (2010) On the secondary flow through bifurcating pipes. Phys Fluids 22(10):103,601CrossRef
Zurück zum Zitat Farge M, Guezennec Y, Ho CM, Meneveau C (1990) Continuous wavelet analysis of coherent structures. In: Proceedings of the Summer Program, Center for Turbulence Research, pp 331–348 Farge M, Guezennec Y, Ho CM, Meneveau C (1990) Continuous wavelet analysis of coherent structures. In: Proceedings of the Summer Program, Center for Turbulence Research, pp 331–348
Zurück zum Zitat Glenn AL (2011) Classification of secondary vortices in a curved pipe model of an artery. M.S. thesis, The George Washington University, Washington DC Glenn AL (2011) Classification of secondary vortices in a curved pipe model of an artery. M.S. thesis, The George Washington University, Washington DC
Zurück zum Zitat Glenn AL, Bulusu KV, Shu F, Plesniak MW (2012) Secondary flow strcutures under stent-induced perturbations for cardiovascular flow in a curved artery model. Int J Heat Fluid Flow 35:76–83CrossRef Glenn AL, Bulusu KV, Shu F, Plesniak MW (2012) Secondary flow strcutures under stent-induced perturbations for cardiovascular flow in a curved artery model. Int J Heat Fluid Flow 35:76–83CrossRef
Zurück zum Zitat Gonzalez RC, Woods RE, Eddins SL (2003) Digital Image Processing Using MATLAB. Prentice Hall, New Jersey Gonzalez RC, Woods RE, Eddins SL (2003) Digital Image Processing Using MATLAB. Prentice Hall, New Jersey
Zurück zum Zitat Han JC, Zhang P (1991) Effect of rib-angled orientation on local mass transfer distribution in a three-pass rib-roughened channel. ASME J Turbomach 113:123–130CrossRef Han JC, Zhang P (1991) Effect of rib-angled orientation on local mass transfer distribution in a three-pass rib-roughened channel. ASME J Turbomach 113:123–130CrossRef
Zurück zum Zitat Han JC, Chandra PR, Lau SC (1988) Local heat/mass transfer distributions around sharp 180 deg. turns in twopass smooth and rib-roughened channels. ASME J Heat Transf 110:91–98CrossRef Han JC, Chandra PR, Lau SC (1988) Local heat/mass transfer distributions around sharp 180 deg. turns in twopass smooth and rib-roughened channels. ASME J Heat Transf 110:91–98CrossRef
Zurück zum Zitat Hanus J, Zahora J (2005) Measurement and comparison of mechanical properties of nitinol stents. Phys Scr T118:264–267CrossRef Hanus J, Zahora J (2005) Measurement and comparison of mechanical properties of nitinol stents. Phys Scr T118:264–267CrossRef
Zurück zum Zitat Holdsworth D, Norley CJ, Frayne R, Steinman DA, Rutt BK (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20(3):219–240CrossRef Holdsworth D, Norley CJ, Frayne R, Steinman DA, Rutt BK (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20(3):219–240CrossRef
Zurück zum Zitat Jarrahi M, Castelain C, Peerhossaini H (2011) Secondary flow patterns and mixing in laminar pulsating flow through a curved pipe. Exp Fluids 50:1539–1558CrossRef Jarrahi M, Castelain C, Peerhossaini H (2011) Secondary flow patterns and mixing in laminar pulsating flow through a curved pipe. Exp Fluids 50:1539–1558CrossRef
Zurück zum Zitat Kailas SV, Narasimha R (1999) The eduction of structures from flow imagery using wavelets: Part i. the mixing layer. Experiments in Fluids 27:167–174CrossRef Kailas SV, Narasimha R (1999) The eduction of structures from flow imagery using wavelets: Part i. the mixing layer. Experiments in Fluids 27:167–174CrossRef
Zurück zum Zitat Ligrani PM, Choi S, Schallert AR, Skogerboe P (1996) Effects of Dean vortex pairs on surface heat transfer in curved channel flow. Int J Heat Mass Transf 39(1):27–37 Ligrani PM, Choi S, Schallert AR, Skogerboe P (1996) Effects of Dean vortex pairs on surface heat transfer in curved channel flow. Int J Heat Mass Transf 39(1):27–37
Zurück zum Zitat Lyne WH (1970) Unsteady flow in a curved pipe. J Fluid Mech 45:13–31CrossRef Lyne WH (1970) Unsteady flow in a curved pipe. J Fluid Mech 45:13–31CrossRef
Zurück zum Zitat Mallubhotla H, Belfort G, Edelstein WA, Early TA (2001) Dean vortex stability using magnetic resonance flow imaging and numerical analysis. AIChE J 47(5):1126–1139CrossRef Mallubhotla H, Belfort G, Edelstein WA, Early TA (2001) Dean vortex stability using magnetic resonance flow imaging and numerical analysis. AIChE J 47(5):1126–1139CrossRef
Zurück zum Zitat Melchior B, Frangos JA (2010) Shear-induced endothelial cell–cell junction inclination. Am J Physiol Cell Physiol 299:C621–C629CrossRef Melchior B, Frangos JA (2010) Shear-induced endothelial cell–cell junction inclination. Am J Physiol Cell Physiol 299:C621–C629CrossRef
Zurück zum Zitat Napho P, Wongwises S (2006) A review of flow and heat transfer characteristics in curved tubes. Renewable Sustainable Energy Rev 10:463–490CrossRef Napho P, Wongwises S (2006) A review of flow and heat transfer characteristics in curved tubes. Renewable Sustainable Energy Rev 10:463–490CrossRef
Zurück zum Zitat Schram C, Riethmuller ML (2001) Vortex ring evolution in an impulsively started jet using digital particle image velocimetry and continuous wavelet analysis. Meas Sci Technol 12:1413–1421CrossRef Schram C, Riethmuller ML (2001) Vortex ring evolution in an impulsively started jet using digital particle image velocimetry and continuous wavelet analysis. Meas Sci Technol 12:1413–1421CrossRef
Zurück zum Zitat Schram C, Rambaud P, Riethmuller ML (2004) Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp Fluids 36:233–245CrossRef Schram C, Rambaud P, Riethmuller ML (2004) Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp Fluids 36:233–245CrossRef
Zurück zum Zitat Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423
Zurück zum Zitat Son SY, Kihm KD, Han JC (2002) PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 degree ribbed walls. Int J Heat Mass Transf 45:4809–4822CrossRef Son SY, Kihm KD, Han JC (2002) PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 degree ribbed walls. Int J Heat Mass Transf 45:4809–4822CrossRef
Zurück zum Zitat Song MS (2007) Representations, wavelets and frames A celebration of the mathematical work of Lawrence Baggett, Birkhauser, chap entropy encoding in wavelet image compression, pp 293–311 Song MS (2007) Representations, wavelets and frames A celebration of the mathematical work of Lawrence Baggett, Birkhauser, chap entropy encoding in wavelet image compression, pp 293–311
Zurück zum Zitat Starck JL, Murtagh F, Gastaud R (1998) A new entropy measure based on the wavelet transform and noise modeling. IEEE Trans Circuits Syst II Analog Digital Signal Process 45(8):1118–1124MATHCrossRef Starck JL, Murtagh F, Gastaud R (1998) A new entropy measure based on the wavelet transform and noise modeling. IEEE Trans Circuits Syst II Analog Digital Signal Process 45(8):1118–1124MATHCrossRef
Zurück zum Zitat Sudo K, Sumida M, Yamane R (1992) Secondary motion of fully developed oscillatory flow in a curved pipe. J Fluid Mech 237:189–208CrossRef Sudo K, Sumida M, Yamane R (1992) Secondary motion of fully developed oscillatory flow in a curved pipe. J Fluid Mech 237:189–208CrossRef
Zurück zum Zitat Timité B, Castelian C, Peerhossaini H (2010) Pulsatile viscous flow in a curved pipe: effects of pulsation on the development of secondary flow. Int J Heat Fluid Flow 31:879–896CrossRef Timité B, Castelian C, Peerhossaini H (2010) Pulsatile viscous flow in a curved pipe: effects of pulsation on the development of secondary flow. Int J Heat Fluid Flow 31:879–896CrossRef
Zurück zum Zitat Varun AV, Balasubraminian K, Sujith RI (2008) An automated vortex detection scheme using the wavelet transform of the d 2 field. Exp Fluids 45:857–868CrossRef Varun AV, Balasubraminian K, Sujith RI (2008) An automated vortex detection scheme using the wavelet transform of the d 2 field. Exp Fluids 45:857–868CrossRef
Zurück zum Zitat Vashisth S, Kumar V, Nigam KDP (2008) A review on the potential applications of curved geometries in process industry. Ind Eng Chem Res 47(10):3291–3337CrossRef Vashisth S, Kumar V, Nigam KDP (2008) A review on the potential applications of curved geometries in process industry. Ind Eng Chem Res 47(10):3291–3337CrossRef
Zurück zum Zitat White CR, Frangos JA (2010) The shear stress of it all: the cell membrane and mechanochemical transduction. Phil Trans R Soc B 362:1459–1467CrossRef White CR, Frangos JA (2010) The shear stress of it all: the cell membrane and mechanochemical transduction. Phil Trans R Soc B 362:1459–1467CrossRef
Zurück zum Zitat Wickerhauser MV (1994) Adapted wavelet analysis from theory to software. A. K. Peters, Wellesley, MAMATH Wickerhauser MV (1994) Adapted wavelet analysis from theory to software. A. K. Peters, Wellesley, MAMATH
Zurück zum Zitat Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774CrossRef Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774CrossRef
Metadaten
Titel
Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration
verfasst von
Kartik V. Bulusu
Michael W. Plesniak
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 3/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1493-7

Weitere Artikel der Ausgabe 3/2013

Experiments in Fluids 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.