Skip to main content
Erschienen in: Experiments in Fluids 7/2013

01.07.2013 | Research Article

Flow structures around a flapping wing considering ground effect

verfasst von: Tien Van Truong, Jihoon Kim, Min Jun Kim, Hoon Cheol Park, Kwang Joon Yoon, Doyoung Byun

Erschienen in: Experiments in Fluids | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle (Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle’s wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle’s wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle’s wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmed MR, Sharma SD (2005) An investigation on the aerodynamics of a symmetrical airfoil in ground effect. Exp Thermal Fluid Sci 29:633–647CrossRef Ahmed MR, Sharma SD (2005) An investigation on the aerodynamics of a symmetrical airfoil in ground effect. Exp Thermal Fluid Sci 29:633–647CrossRef
Zurück zum Zitat Ahmed MR, Takasaki T, Kohama Y (2007) Aerodynamics of a NACA4412 airfoil in ground effect. AIAA J 45:37–47CrossRef Ahmed MR, Takasaki T, Kohama Y (2007) Aerodynamics of a NACA4412 airfoil in ground effect. AIAA J 45:37–47CrossRef
Zurück zum Zitat Ansari S, Phillips N, Stabler G, Wilkins P, Żbikowski R, Knowles K (2009) Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp Fluids 46:777–798. doi:10.1007/s00348-009-0661-2 CrossRef Ansari S, Phillips N, Stabler G, Wilkins P, Żbikowski R, Knowles K (2009) Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp Fluids 46:777–798. doi:10.​1007/​s00348-009-0661-2 CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733CrossRef Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733CrossRef
Zurück zum Zitat Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072. doi:10.1242/jeb.00848 CrossRef Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072. doi:10.​1242/​jeb.​00848 CrossRef
Zurück zum Zitat Bomphrey RJ, Lawson NJ, Harding NJ, Taylor GK, Thomas ALR (2005) The aerodynamics of Manducasexta: digital particle image velocimetry analysis of the leading-edge vortex. J Exp Biol 208:1079–1094. doi:10.1242/jeb.01471 CrossRef Bomphrey RJ, Lawson NJ, Harding NJ, Taylor GK, Thomas ALR (2005) The aerodynamics of Manducasexta: digital particle image velocimetry analysis of the leading-edge vortex. J Exp Biol 208:1079–1094. doi:10.​1242/​jeb.​01471 CrossRef
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B Biol Sci 305:41–78CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B Biol Sci 305:41–78CrossRef
Zurück zum Zitat Gao T, Liu N-s, Lu X-y (2008) Numerical analysis of the ground effect on insect hovering. J Hydrodyn Ser B 20:17–22CrossRef Gao T, Liu N-s, Lu X-y (2008) Numerical analysis of the ground effect on insect hovering. J Hydrodyn Ser B 20:17–22CrossRef
Zurück zum Zitat Hyungmin P, Haecheon C (2012) Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir Biomim 7:016008CrossRef Hyungmin P, Haecheon C (2012) Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir Biomim 7:016008CrossRef
Zurück zum Zitat Ishihara D, Yamashita Y, Horie T, Yoshida S, Niho T (2009) Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J Exp Biol 212:3882–3891. doi:10.1242/jeb.030684 CrossRef Ishihara D, Yamashita Y, Horie T, Yoshida S, Niho T (2009) Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J Exp Biol 212:3882–3891. doi:10.​1242/​jeb.​030684 CrossRef
Zurück zum Zitat Le TQ, Byun D, Saputra P, Ko JH, Park HC, Kim M (2010) Numerical investigation of the aerodynamic characteristics of a hovering Coleopteran insect. J Theor Biol 266:485–495MathSciNetCrossRef Le TQ, Byun D, Saputra P, Ko JH, Park HC, Kim M (2010) Numerical investigation of the aerodynamic characteristics of a hovering Coleopteran insect. J Theor Biol 266:485–495MathSciNetCrossRef
Zurück zum Zitat Le TQ, Truong TV, Park SH, et al. (2013) Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J R Soc Interface 10 doi:10.1098/rsif.2013.0312 Le TQ, Truong TV, Park SH, et al. (2013) Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J R Soc Interface 10 doi:10.​1098/​rsif.​2013.​0312
Zurück zum Zitat Liang Z, Xinyan D, Sanjay PS (2011) Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Bioinspir Biomim 6:036007CrossRef Liang Z, Xinyan D, Sanjay PS (2011) Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Bioinspir Biomim 6:036007CrossRef
Zurück zum Zitat Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef
Zurück zum Zitat Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518 Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518
Zurück zum Zitat Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191CrossRef
Zurück zum Zitat Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626 Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626
Zurück zum Zitat Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096 Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096
Zurück zum Zitat Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynold Number flyers. Cambridge University Press, Cambridge Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynold Number flyers. Cambridge University Press, Cambridge
Zurück zum Zitat Sudhakar Y, Vengadesan S (2010) Flight force production by flapping insect wings in inclined stroke plane kinematics. Comput Fluids 39:683–695MATHCrossRef Sudhakar Y, Vengadesan S (2010) Flight force production by flapping insect wings in inclined stroke plane kinematics. Comput Fluids 39:683–695MATHCrossRef
Zurück zum Zitat Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55
Zurück zum Zitat Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ (2004) Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol 207:4299–4323. doi:10.1242/jeb.01262 CrossRef Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ (2004) Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol 207:4299–4323. doi:10.​1242/​jeb.​01262 CrossRef
Zurück zum Zitat Tyson LH (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001CrossRef Tyson LH (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001CrossRef
Zurück zum Zitat Van Truong T, Le TQ, Byun D, Park HC (2011) Take of mechanics in beetle flight. In: International conference on intelligent unmaned system 2011, Chiba, Japan, pp 74 Van Truong T, Le TQ, Byun D, Park HC (2011) Take of mechanics in beetle flight. In: International conference on intelligent unmaned system 2011, Chiba, Japan, pp 74
Zurück zum Zitat Van Truong T, Le TQ, Byun D, Park HC, Kim M (2012a) Flexible wing kinematics of a free-flying beetle (Rhinoceros beetle Trypoxylusdichotomus). J Bionic Eng 9:177–184CrossRef Van Truong T, Le TQ, Byun D, Park HC, Kim M (2012a) Flexible wing kinematics of a free-flying beetle (Rhinoceros beetle Trypoxylusdichotomus). J Bionic Eng 9:177–184CrossRef
Zurück zum Zitat Van Truong T, Le TQ, Tran HT, Park HC, Yoon KJ, Byun D (2012b) Flow visualization of rhinoceros beetle (Trypoxylusdichotomus) in free flight. J Bionic Eng 9:304–314CrossRef Van Truong T, Le TQ, Tran HT, Park HC, Yoon KJ, Byun D (2012b) Flow visualization of rhinoceros beetle (Trypoxylusdichotomus) in free flight. J Bionic Eng 9:304–314CrossRef
Zurück zum Zitat Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230 Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230
Zurück zum Zitat Willmott A, Ellington C (1997) The mechanics of flight in the hawkmoth Manducasexta. I. Kinematics of hovering and forward flight. J Exp Biol 200:2705–2722 Willmott A, Ellington C (1997) The mechanics of flight in the hawkmoth Manducasexta. I. Kinematics of hovering and forward flight. J Exp Biol 200:2705–2722
Zurück zum Zitat Zhang X, Molina J (2011) Aerodynamics of a heaving airfoil in ground effect. AIAA J 49:1168–1179CrossRef Zhang X, Molina J (2011) Aerodynamics of a heaving airfoil in ground effect. AIAA J 49:1168–1179CrossRef
Zurück zum Zitat Zhao L, Huang Q, Deng X, Sane SP (2010) Aerodynamic effects of flexibility in flapping wings. J R Soc Interface 7:485–497CrossRef Zhao L, Huang Q, Deng X, Sane SP (2010) Aerodynamic effects of flexibility in flapping wings. J R Soc Interface 7:485–497CrossRef
Metadaten
Titel
Flow structures around a flapping wing considering ground effect
verfasst von
Tien Van Truong
Jihoon Kim
Min Jun Kim
Hoon Cheol Park
Kwang Joon Yoon
Doyoung Byun
Publikationsdatum
01.07.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 7/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1575-6

Weitere Artikel der Ausgabe 7/2013

Experiments in Fluids 7/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.