Skip to main content
Erschienen in: Experiments in Fluids 9/2016

01.09.2016 | Research Article

Drag reduction by means of dimpled surfaces in turbulent boundary layers

verfasst von: M. van Nesselrooij, L. L. M. Veldhuis, B. W. van Oudheusden, F. F. J. Schrijer

Erschienen in: Experiments in Fluids | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier–Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Breuer M, Lammers P, Zeiser T, Hager G, Wellein G (2008) Direct numerical simulation of turbulent flow over dimples—code optimization for nec sx-8 plus flow results. In: High performance computing in science and engineering’07: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2007, pp 303–318 Breuer M, Lammers P, Zeiser T, Hager G, Wellein G (2008) Direct numerical simulation of turbulent flow over dimples—code optimization for nec sx-8 plus flow results. In: High performance computing in science and engineering’07: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2007, pp 303–318
Zurück zum Zitat Choi KS, Clayton BR (2001) The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow 22(1):1–9CrossRef Choi KS, Clayton BR (2001) The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow 22(1):1–9CrossRef
Zurück zum Zitat Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc A 368(1929):4775–4806. doi:10.2307/25753440 CrossRef Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc A 368(1929):4775–4806. doi:10.​2307/​25753440 CrossRef
Zurück zum Zitat Isaev SA, Leont’ev AI, Baranov PA (2000) Identification of self-organized vortexlike structures in numerically simulated turbulent flow of a viscous incompressible liquid streaming around a well on a plane. Tech Phys Lett 26(1):15–18CrossRef Isaev SA, Leont’ev AI, Baranov PA (2000) Identification of self-organized vortexlike structures in numerically simulated turbulent flow of a viscous incompressible liquid streaming around a well on a plane. Tech Phys Lett 26(1):15–18CrossRef
Zurück zum Zitat Kiknadze GI, Krasnov YK, Chushkin YV (1984) Investigation of the enhancement of heat transfer due to self-organization of ordered dynamic twisted heat-carrier structures on a heat-transfer surface. Report IV Kurchatov Institute of Atomic Energy Kiknadze GI, Krasnov YK, Chushkin YV (1984) Investigation of the enhancement of heat transfer due to self-organization of ordered dynamic twisted heat-carrier structures on a heat-transfer surface. Report IV Kurchatov Institute of Atomic Energy
Zurück zum Zitat Kiknadze GI, Gachechiladze IA, Oleinikov VG, Alekseev VV (2006) Mechanisms of the self-organization of tornado-like jets flowing past three-dimensional concave reliefs. Heat Transf Res 37(6):467–494CrossRef Kiknadze GI, Gachechiladze IA, Oleinikov VG, Alekseev VV (2006) Mechanisms of the self-organization of tornado-like jets flowing past three-dimensional concave reliefs. Heat Transf Res 37(6):467–494CrossRef
Zurück zum Zitat Klebanoff P (1955) Characteristics of turbulenc in a boundary layer with zero pressure gradient. Report, NACA Klebanoff P (1955) Characteristics of turbulenc in a boundary layer with zero pressure gradient. Report, NACA
Zurück zum Zitat Kovalenko GV, Terekhov VI, Khalatov AA (2010) Flow regimes in a single dimple on the channel surface. J Appl Mech Tech Phys 51(6):839–848CrossRef Kovalenko GV, Terekhov VI, Khalatov AA (2010) Flow regimes in a single dimple on the channel surface. J Appl Mech Tech Phys 51(6):839–848CrossRef
Zurück zum Zitat Lashkov YA, Samoilova NV (2002) On the viscous drag of a plate with spherical recesses. Fluid Dyn 37(2):231–236CrossRefMATH Lashkov YA, Samoilova NV (2002) On the viscous drag of a plate with spherical recesses. Fluid Dyn 37(2):231–236CrossRefMATH
Zurück zum Zitat Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRef Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRef
Zurück zum Zitat Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271CrossRefMATH Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271CrossRefMATH
Zurück zum Zitat Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef
Zurück zum Zitat Tay CM (2011) Determining the effect of dimples on drag in a turbulent channel flow. In: 49th AIAA aerospace sciences meeting. doi:10.2514/6.2011-682 Tay CM (2011) Determining the effect of dimples on drag in a turbulent channel flow. In: 49th AIAA aerospace sciences meeting. doi:10.​2514/​6.​2011-682
Zurück zum Zitat Veldhuis L, Vervoort E (2009) Drag effect of a dented surface in a turbulent flow. In: 27th AIAA applied aerodynamics conference. doi:10.2514/6.2009-3950 Veldhuis L, Vervoort E (2009) Drag effect of a dented surface in a turbulent flow. In: 27th AIAA applied aerodynamics conference. doi:10.​2514/​6.​2009-3950
Zurück zum Zitat White F (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, New York White F (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, New York
Zurück zum Zitat Yakeno A, Hasegawa Y, Kasagi N (2014) Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys Fluids 26(8):85–109. doi:10.1063/1.4893903 CrossRef Yakeno A, Hasegawa Y, Kasagi N (2014) Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys Fluids 26(8):85–109. doi:10.​1063/​1.​4893903 CrossRef
Zurück zum Zitat Zhao J, Chew Y, Khoo B (2004) Experimental studies on hydrodynamic resistance and flow pattern of a narrow flow channel with dimples on the wall. In: ASME 2004 international mechanical engineering congress and exposition Zhao J, Chew Y, Khoo B (2004) Experimental studies on hydrodynamic resistance and flow pattern of a narrow flow channel with dimples on the wall. In: ASME 2004 international mechanical engineering congress and exposition
Metadaten
Titel
Drag reduction by means of dimpled surfaces in turbulent boundary layers
verfasst von
M. van Nesselrooij
L. L. M. Veldhuis
B. W. van Oudheusden
F. F. J. Schrijer
Publikationsdatum
01.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 9/2016
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-016-2230-9

Weitere Artikel der Ausgabe 9/2016

Experiments in Fluids 9/2016 Zur Ausgabe

Research Article

Bouncing antibubbles

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.