Skip to main content
Erschienen in: Experiments in Fluids 2/2020

01.02.2020 | Research Article

Magnetic resonance velocimetry in high-speed turbulent flows: sources of measurement errors and a new approach for higher accuracy

verfasst von: Kristine John, Saad Jahangir, Udhav Gawandalkar, Willian Hogendoorn, Christian Poelma, Sven Grundmann, Martin Bruschewski

Erschienen in: Experiments in Fluids | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study focuses on the measurement accuracy of Magnetic Resonance Velocimetry (MRV) in high-speed turbulent flows. One of the most prominent errors in MRV is the displacement error, which describes the misregistration of spatial coordinates and velocity components in moving fluids. Displacement errors are particularly critical for experiments with high flow velocity and high spatial resolution. The degree of displacement error also depends on the sequence structure of the MRV technique. In this study, two MRV sequence types are examined regarding their measurement capabilities in high-speed turbulent flows: a conventional MRV sequence based on the popular “4D FLOW” technique, and a newly developed sequence, named “SYNC SPI”. Compared to conventional MRV, SYNC SPI is designed for high measurement accuracy, and not for imaging speed, which limits its application to statistically stationary flows. Both sequence types are evaluated in a flow experiment with a converging–diverging nozzle. Time-averaged results are presented for velocities up to 12 m/s at the throat. Supported by Particle Imaging Velocimetry, it is shown that SYNC SPI is capable of acquiring accurate velocity data in these highly turbulent flows. In contrast, the data from the conventional MRV sequence exhibits substantial displacement errors with a maximum displacement of 21 mm. The long acquisition time is the main disadvantage of the SYNC SPI sequence. Therefore, it is examined if undersampling and non-linear reconstruction, known as Compressed Sensing, can be utilized to make data acquisition more efficient. In the presented measurements, Compressed Sensing is successfully applied to shorten the acquisition time by up to 70% with almost no reduction in measurement accuracy.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baek S, Lee S, Hwang W, Park JS (2019) Experimental and numerical investigation of the flow in a trailing edge ribbed internal cooling passage. J Turbomach 141(1):011–012CrossRef Baek S, Lee S, Hwang W, Park JS (2019) Experimental and numerical investigation of the flow in a trailing edge ribbed internal cooling passage. J Turbomach 141(1):011–012CrossRef
Zurück zum Zitat Bernstein MA, Shimakawa A, Pelc NJ (1992) Minimizing TE in moment-nulled or flow-encoded two-and three-dimensional gradient-echo imaging. J Magn Reson Imaging 2(5):583–588CrossRef Bernstein MA, Shimakawa A, Pelc NJ (1992) Minimizing TE in moment-nulled or flow-encoded two-and three-dimensional gradient-echo imaging. J Magn Reson Imaging 2(5):583–588CrossRef
Zurück zum Zitat Bruschewski M, Freudenhammer D, Buchenberg WB, Schiffer HP, Grundmann S (2016a) Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models. Exp Fluids 57(5):83CrossRef Bruschewski M, Freudenhammer D, Buchenberg WB, Schiffer HP, Grundmann S (2016a) Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models. Exp Fluids 57(5):83CrossRef
Zurück zum Zitat Bruschewski M, Scherhag C, Schiffer HP, Grundmann S (2016b) Influence of channel geometry and flow variables on cyclone cooling of turbine blades. J Turbomach 138(6):061,005–061,005CrossRef Bruschewski M, Scherhag C, Schiffer HP, Grundmann S (2016b) Influence of channel geometry and flow variables on cyclone cooling of turbine blades. J Turbomach 138(6):061,005–061,005CrossRef
Zurück zum Zitat Bruschewski M, Kolkmannn H, John K, Grundmann S (2019) Phase-contrast single-point imaging with synchronized encoding: a more reliable technique for in vitro flow quantification. Magn Reson Med 81(5):2937–2946CrossRef Bruschewski M, Kolkmannn H, John K, Grundmann S (2019) Phase-contrast single-point imaging with synchronized encoding: a more reliable technique for in vitro flow quantification. Magn Reson Med 81(5):2937–2946CrossRef
Zurück zum Zitat Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math J Issued Courant Inst Math Sci 59(8):1207–1223MathSciNetCrossRef Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math J Issued Courant Inst Math Sci 59(8):1207–1223MathSciNetCrossRef
Zurück zum Zitat Ching DS, Elkins CJ, Eaton JK (2018) Investigation of geometric sensitivity of a non-axisymmetric bump: 3d mean velocity measurements. Exp Fluids 59(9):143CrossRef Ching DS, Elkins CJ, Eaton JK (2018) Investigation of geometric sensitivity of a non-axisymmetric bump: 3d mean velocity measurements. Exp Fluids 59(9):143CrossRef
Zurück zum Zitat Ehman RL, Felmlee JP (1990) Flow artifact reduction in MRI: a review of the roles of gradient moment nulling and spatial presaturation. Magn Reson Med 14(2):293–307CrossRef Ehman RL, Felmlee JP (1990) Flow artifact reduction in MRI: a review of the roles of gradient moment nulling and spatial presaturation. Magn Reson Med 14(2):293–307CrossRef
Zurück zum Zitat Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858CrossRef Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858CrossRef
Zurück zum Zitat Elkins CJ, Alley MT, Saetran L, Eaton JK (2009) Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow. Exp Fluids 46(2):285–296CrossRef Elkins CJ, Alley MT, Saetran L, Eaton JK (2009) Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow. Exp Fluids 46(2):285–296CrossRef
Zurück zum Zitat Freudenhammer D, Baum E, Peterson B, Böhm B, Jung B, Grundmann S (2014) Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry. Exp Fluids 55(5):1724CrossRef Freudenhammer D, Baum E, Peterson B, Böhm B, Jung B, Grundmann S (2014) Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry. Exp Fluids 55(5):1724CrossRef
Zurück zum Zitat Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63CrossRef Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63CrossRef
Zurück zum Zitat Holland DJ, Malioutov DM, Blake A, Sederman AJ, Gladden L (2010) Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J Magn Reson 203(2):236–246CrossRef Holland DJ, Malioutov DM, Blake A, Sederman AJ, Gladden L (2010) Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J Magn Reson 203(2):236–246CrossRef
Zurück zum Zitat Jahangir S, Hogendoorn W, Poelma C (2018) Dynamics of partial cavitation in an axisymmetric converging–diverging nozzle. Int J Multiph Flow 106:34–45CrossRef Jahangir S, Hogendoorn W, Poelma C (2018) Dynamics of partial cavitation in an axisymmetric converging–diverging nozzle. Int J Multiph Flow 106:34–45CrossRef
Zurück zum Zitat Larson T 3rd, Kelly W, Ehman RL, Wehrli F (1990) Spatial misregistration of vascular flow during MR imaging of the CNS: cause and clinical significance. Am J Roentgenol 155(5):1117–1124CrossRef Larson T 3rd, Kelly W, Ehman RL, Wehrli F (1990) Spatial misregistration of vascular flow during MR imaging of the CNS: cause and clinical significance. Am J Roentgenol 155(5):1117–1124CrossRef
Zurück zum Zitat Layton KJ, Kroboth S, Jia F, Littin S, Yu H, Leupold J, Nielsen JF, Stöcker T, Zaitsev M (2017) Pulseq: a rapid and hardware-independent pulse sequence prototyping framework. Magn Reson Med 77(4):1544–1552CrossRef Layton KJ, Kroboth S, Jia F, Littin S, Yu H, Leupold J, Nielsen JF, Stöcker T, Zaitsev M (2017) Pulseq: a rapid and hardware-independent pulse sequence prototyping framework. Magn Reson Med 77(4):1544–1552CrossRef
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRef
Zurück zum Zitat Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72CrossRef Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72CrossRef
Zurück zum Zitat Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036CrossRef Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036CrossRef
Zurück zum Zitat Nishimura DG, Jackson JI, Pauly JM (1991) On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 22(2):481–492CrossRef Nishimura DG, Jackson JI, Pauly JM (1991) On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 22(2):481–492CrossRef
Zurück zum Zitat Onstad AJ, Elkins CJ, Medina F, Wicker RB, Eaton JK (2011) Full-field measurements of flow through a scaled metal foam replica. Exp Fluids 50(6):1571–1585CrossRef Onstad AJ, Elkins CJ, Medina F, Wicker RB, Eaton JK (2011) Full-field measurements of flow through a scaled metal foam replica. Exp Fluids 50(6):1571–1585CrossRef
Zurück zum Zitat Piro M, Wassermann F, Grundmann S, Leitch B, Tropea C (2016) Progress in on-going experimental and computational fluid dynamic investigations within a CANDU fuel channel. Nucl Eng Des 299:184–200CrossRef Piro M, Wassermann F, Grundmann S, Leitch B, Tropea C (2016) Progress in on-going experimental and computational fluid dynamic investigations within a CANDU fuel channel. Nucl Eng Des 299:184–200CrossRef
Zurück zum Zitat Untenberger M, Tan Z, Voit D, Joseph AA, Roeloffs V, Merboldt KD, Schätz S, Frahm J (2016) Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med 75(5):1901–1908CrossRef Untenberger M, Tan Z, Voit D, Joseph AA, Roeloffs V, Merboldt KD, Schätz S, Frahm J (2016) Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med 75(5):1901–1908CrossRef
Zurück zum Zitat Wapler MC, Leupold J, Dragonu I, von Elverfeld D, Zaitsev M, Wallrabe U (2014) Magnetic properties of materials for MR engineering, micro-MR and beyond. J Magn Reson 242:233–242CrossRef Wapler MC, Leupold J, Dragonu I, von Elverfeld D, Zaitsev M, Wallrabe U (2014) Magnetic properties of materials for MR engineering, micro-MR and beyond. J Magn Reson 242:233–242CrossRef
Zurück zum Zitat Wassermann F, Hecker D, Jung B, Markl M, Seifert A, Grundmann S (2013) Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Exp Fluids 54(3):1487CrossRef Wassermann F, Hecker D, Jung B, Markl M, Seifert A, Grundmann S (2013) Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Exp Fluids 54(3):1487CrossRef
Zurück zum Zitat Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100CrossRef Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100CrossRef
Metadaten
Titel
Magnetic resonance velocimetry in high-speed turbulent flows: sources of measurement errors and a new approach for higher accuracy
verfasst von
Kristine John
Saad Jahangir
Udhav Gawandalkar
Willian Hogendoorn
Christian Poelma
Sven Grundmann
Martin Bruschewski
Publikationsdatum
01.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 2/2020
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2849-4

Weitere Artikel der Ausgabe 2/2020

Experiments in Fluids 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.