Skip to main content
Erschienen in: Pattern Analysis and Applications 4/2020

27.02.2020 | Theoretical Advances

Local binary pattern-based on-road vehicle detection in urban traffic scene

verfasst von: M. Hassaballah, Mourad A. Kenk, Ibrahim M. El-Henawy

Erschienen in: Pattern Analysis and Applications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For intelligent traffic monitoring systems and related applications, detecting vehicles on roads is a vital step. However, robust and efficient vehicles detection is still a challenging problem due to variations in the appearance of the vehicles and complicated background of the roads. In this paper, we propose a simple and effective vehicle detection method based on local vehicle's texture and appearance histograms feed into clustering forests. The interdependency of vehicle's parts locations is incorporating within a clustering forests framework. Local binary pattern-like descriptors are utilized for texture feature extraction. Through utilizing the LBP descriptors, the local structures of vehicles, such as edge, contour and flat region can be effectively depicted. The align set of histograms generated concurrence with LBPs spatial for random sampled local regions are used to measure the dissimilarity between regions of all training images. Evaluating the fit between histograms is built in clustering forests. That is, clustering discriminative codebooks of latent features are used to search between different LBP features of the random regions utilizing the Chi-square dissimilarity measure. Besides, saliency maps built by the learnt latent features are adopted to determine the vehicles locations in test image. Effectiveness of the proposed method is evaluated on different car datasets stressing various imaging conditions and the obtained results show that the method achieves significant improvements compared to published methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Messelodi S, Modena CM, Zanin M (2005) A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal Appl 8(1–2):17–31MathSciNet Messelodi S, Modena CM, Zanin M (2005) A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal Appl 8(1–2):17–31MathSciNet
2.
Zurück zum Zitat Karaimer HC, Baris I, Bastanlar Y (2017) Detection and classification of vehicles from omnidirectional videos using multiple silhouettes. Pattern Anal Appl 20(3):893–905MathSciNet Karaimer HC, Baris I, Bastanlar Y (2017) Detection and classification of vehicles from omnidirectional videos using multiple silhouettes. Pattern Anal Appl 20(3):893–905MathSciNet
3.
Zurück zum Zitat García F, Prioletti A, Cerri P, Broggi A (2018) PHD filter for vehicle tracking based on a monocular camera. Expert Syst Appl 91:472–479 García F, Prioletti A, Cerri P, Broggi A (2018) PHD filter for vehicle tracking based on a monocular camera. Expert Syst Appl 91:472–479
4.
Zurück zum Zitat Sivaraman S, Trivedi MM (2013) Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans Intell Transp Syst 14(4):1773–1795 Sivaraman S, Trivedi MM (2013) Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans Intell Transp Syst 14(4):1773–1795
5.
Zurück zum Zitat Ahmadi SA, Ghorbanian A, Mohammadzadeh A (2019) Moving vehicle detection, tracking and traffic parameter estimation from a satellite video: a perspective on a smarter city. Int J Remote Sens 40(22):8379–8394 Ahmadi SA, Ghorbanian A, Mohammadzadeh A (2019) Moving vehicle detection, tracking and traffic parameter estimation from a satellite video: a perspective on a smarter city. Int J Remote Sens 40(22):8379–8394
6.
Zurück zum Zitat Amanatiadis A, Karakasis E, Bampis L, Ploumpis S, Gasteratos A (2019) ViPED: on-road vehicle passenger detection for autonomous vehicles. Robot Auton Syst 112:282–290 Amanatiadis A, Karakasis E, Bampis L, Ploumpis S, Gasteratos A (2019) ViPED: on-road vehicle passenger detection for autonomous vehicles. Robot Auton Syst 112:282–290
7.
Zurück zum Zitat Lima DH, Aquino AL, Ramos HS, Almeida ES, Rodrigues JJ (2014) OASys: an opportunistic and agile system to detect free on-street parking using intelligent boards embedded in surveillance cameras. J Netw Comput Appl 46:241–249 Lima DH, Aquino AL, Ramos HS, Almeida ES, Rodrigues JJ (2014) OASys: an opportunistic and agile system to detect free on-street parking using intelligent boards embedded in surveillance cameras. J Netw Comput Appl 46:241–249
8.
Zurück zum Zitat Dai Z, Song H, Wang X, Fang Y, Yun X, Zhang Z, Li H (2019) Video-based vehicle counting framework. IEEE Access 7:64460–64470 Dai Z, Song H, Wang X, Fang Y, Yun X, Zhang Z, Li H (2019) Video-based vehicle counting framework. IEEE Access 7:64460–64470
9.
Zurück zum Zitat Mukhtar A, Xia L, Tang TB (2015) Vehicle detection techniques for collision avoidance systems: a review. IEEE Trans Intell Transp Syst 16(5):2318–2338 Mukhtar A, Xia L, Tang TB (2015) Vehicle detection techniques for collision avoidance systems: a review. IEEE Trans Intell Transp Syst 16(5):2318–2338
10.
Zurück zum Zitat Wang X, Tang J, Niu J, Zhao X (2016) Vision-based two-step brake detection method for vehicle collision avoidance. Neurocomputing 173:450–461 Wang X, Tang J, Niu J, Zhao X (2016) Vision-based two-step brake detection method for vehicle collision avoidance. Neurocomputing 173:450–461
11.
Zurück zum Zitat Stocker M, Silvonen P, Rönkkö M, Kolehmainen M (2016) Detection and classification of vehicles by measurement of road-pavement vibration and by means of supervised machine learning. J Intell Transp Syst 20(2):125–137 Stocker M, Silvonen P, Rönkkö M, Kolehmainen M (2016) Detection and classification of vehicles by measurement of road-pavement vibration and by means of supervised machine learning. J Intell Transp Syst 20(2):125–137
12.
Zurück zum Zitat Liu W, Liao S, Hu W (2019) Towards accurate tiny vehicle detection in complex scenes. Neurocomputing 347:24–33 Liu W, Liao S, Hu W (2019) Towards accurate tiny vehicle detection in complex scenes. Neurocomputing 347:24–33
13.
Zurück zum Zitat Cao L, Wang C, Li J (2016) Vehicle detection from highway satellite images via transfer learning. Inf Sci 366:177–187MathSciNet Cao L, Wang C, Li J (2016) Vehicle detection from highway satellite images via transfer learning. Inf Sci 366:177–187MathSciNet
14.
Zurück zum Zitat Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. IEEE Trans Pattern Anal Mach Intell 28(5):694–711 Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. IEEE Trans Pattern Anal Mach Intell 28(5):694–711
15.
Zurück zum Zitat Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34(1):3–19 Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34(1):3–19
16.
Zurück zum Zitat Kembhavi A, Harwood D, Davis L (2011) Vehicle detection using partial least squares. IEEE Trans Pattern Anal Mach Intell 33(6):1250–1265 Kembhavi A, Harwood D, Davis L (2011) Vehicle detection using partial least squares. IEEE Trans Pattern Anal Mach Intell 33(6):1250–1265
17.
Zurück zum Zitat Su A, Sun X, Zhang Y, Yu Q (2016) Efficient rotation-invariant histogram of oriented gradient descriptors for car detection in satellite images. IET Comput Vis 33(6):1250–1265 Su A, Sun X, Zhang Y, Yu Q (2016) Efficient rotation-invariant histogram of oriented gradient descriptors for car detection in satellite images. IET Comput Vis 33(6):1250–1265
18.
Zurück zum Zitat Leitloff J, Hinz S, Stilla U (2010) Vehicle detection in very high resolution satellite images of city areas. IEEE Trans Geosci Remote Sens 48(7):2795–2806 Leitloff J, Hinz S, Stilla U (2010) Vehicle detection in very high resolution satellite images of city areas. IEEE Trans Geosci Remote Sens 48(7):2795–2806
19.
Zurück zum Zitat Wei Y, Tian Q, Guo J, Huang W, Cao J (2019) Multi-vehicle detection algorithm through combining harr and HOG features. Math Computers Simul 155:130–145MathSciNet Wei Y, Tian Q, Guo J, Huang W, Cao J (2019) Multi-vehicle detection algorithm through combining harr and HOG features. Math Computers Simul 155:130–145MathSciNet
20.
Zurück zum Zitat Awad AI, Hassaballah M (2016) Image feature detectors and descriptors. Studies in Computational Intelligence. Springer, Cham Awad AI, Hassaballah M (2016) Image feature detectors and descriptors. Studies in Computational Intelligence. Springer, Cham
21.
Zurück zum Zitat Mutch J, Lowe DG (2006) Multiclass object recognition with sparse, localized features. In: IEEE conference on computer vision and pattern recognition, pp 11–18 Mutch J, Lowe DG (2006) Multiclass object recognition with sparse, localized features. In: IEEE conference on computer vision and pattern recognition, pp 11–18
22.
Zurück zum Zitat Moranduzzo T, Melgani F (2014) Automatic car counting method for unmanned aerial vehicle images. IEEE Trans Geosci Remote Sens 52(3):1635–1647 Moranduzzo T, Melgani F (2014) Automatic car counting method for unmanned aerial vehicle images. IEEE Trans Geosci Remote Sens 52(3):1635–1647
23.
Zurück zum Zitat Tsai LW, Hsieh JW, Fan KC (2007) Vehicle detection using normalized color and edge map. IEEE Trans Image Process 16(3):850–864MathSciNet Tsai LW, Hsieh JW, Fan KC (2007) Vehicle detection using normalized color and edge map. IEEE Trans Image Process 16(3):850–864MathSciNet
24.
Zurück zum Zitat Wang C, Lien JJ (2008) Automatic vehicle detection using local features—a statistical approach. IEEE Trans Intell Transp Syst 9(1):83–96 Wang C, Lien JJ (2008) Automatic vehicle detection using local features—a statistical approach. IEEE Trans Intell Transp Syst 9(1):83–96
25.
Zurück zum Zitat Ye L, Bo L, Bin T, Qingming Y (2013) Vehicle detection based on the AND-OR graph for congested traffic conditions. IEEE Trans Intell Transp Syst 14(2):984–993 Ye L, Bo L, Bin T, Qingming Y (2013) Vehicle detection based on the AND-OR graph for congested traffic conditions. IEEE Trans Intell Transp Syst 14(2):984–993
26.
Zurück zum Zitat Hassaballah M, Kenk MA, Elhenawy IM (2019) Onroad vehicles detection using appearance and texture information. Egypt Comput Sci J 43(1):33–44 Hassaballah M, Kenk MA, Elhenawy IM (2019) Onroad vehicles detection using appearance and texture information. Egypt Comput Sci J 43(1):33–44
27.
Zurück zum Zitat Dai X (2019) HybridNet: a fast vehicle detection system for autonomous driving. Signal Process Image Commun 70:79–88 Dai X (2019) HybridNet: a fast vehicle detection system for autonomous driving. Signal Process Image Commun 70:79–88
28.
Zurück zum Zitat Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490 Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490
29.
Zurück zum Zitat Rios-Cabrera R, Tuytelaars T, Van Gool L (2012) Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application. Comput Vis Image Underst 116(6):742–753 Rios-Cabrera R, Tuytelaars T, Van Gool L (2012) Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application. Comput Vis Image Underst 116(6):742–753
30.
Zurück zum Zitat Fritz M, Leibe B, Caputo B, Schiele B (2005) Integrating representative and discriminant models for object category detection. In: IEEE international conference on computer vision, San Francisco, CA, USA, pp 1363–1370 Fritz M, Leibe B, Caputo B, Schiele B (2005) Integrating representative and discriminant models for object category detection. In: IEEE international conference on computer vision, San Francisco, CA, USA, pp 1363–1370
31.
Zurück zum Zitat Kapoor A, Winn J (2006) Located hidden random fields: learning discriminative parts for object detection. In: European conference on computer vision, San Francisco, CA, USA, pp 302–315 Kapoor A, Winn J (2006) Located hidden random fields: learning discriminative parts for object detection. In: European conference on computer vision, San Francisco, CA, USA, pp 302–315
32.
Zurück zum Zitat Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. In: IEEE international conference on computer vision, pp 1–8 Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. In: IEEE international conference on computer vision, pp 1–8
33.
Zurück zum Zitat Kuo CH, Nevatia R (2009) Robust multi-view car detection using unsupervised sub-categorization. In: IEEE workshop on applications of computer vision, pp 1–8 Kuo CH, Nevatia R (2009) Robust multi-view car detection using unsupervised sub-categorization. In: IEEE workshop on applications of computer vision, pp 1–8
34.
Zurück zum Zitat Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A (2010) Efficient rotation invariant object detection using boosted random ferns. In: IEEE conference on computer vision and pattern recognition, pp 1038–1045 Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A (2010) Efficient rotation invariant object detection using boosted random ferns. In: IEEE conference on computer vision and pattern recognition, pp 1038–1045
35.
Zurück zum Zitat Lin BF, Chan YM, Fu LC, Hsiao PY, Chuang LA, Huang SS, Lo MF (2012) Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Trans Intell Transp Syst 13(2):737–747 Lin BF, Chan YM, Fu LC, Hsiao PY, Chuang LA, Huang SS, Lo MF (2012) Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Trans Intell Transp Syst 13(2):737–747
36.
Zurück zum Zitat Cheng HY, Weng CC, Chen YY (2012) Vehicle detection in aerial surveillance using dynamic Bayesian networks. IEEE Trans Image Process 21(4):2152–2159MathSciNetMATH Cheng HY, Weng CC, Chen YY (2012) Vehicle detection in aerial surveillance using dynamic Bayesian networks. IEEE Trans Image Process 21(4):2152–2159MathSciNetMATH
37.
Zurück zum Zitat Cao L, Jiang Q, Cheng M, Wang C (2016) Robust vehicle detection by combining deep features with exemplar classification. Neurocomputing 215:225–231 Cao L, Jiang Q, Cheng M, Wang C (2016) Robust vehicle detection by combining deep features with exemplar classification. Neurocomputing 215:225–231
38.
Zurück zum Zitat Asvadi A, Garrote L, Premebida C, Peixoto P, Nunes UJ (2017) Multimodal vehicle detection: fusing 3d-lidar and color camera data. Pattern Recogn Lett 115:20–29 Asvadi A, Garrote L, Premebida C, Peixoto P, Nunes UJ (2017) Multimodal vehicle detection: fusing 3d-lidar and color camera data. Pattern Recogn Lett 115:20–29
39.
Zurück zum Zitat Zhao J, Xu H, Liu H, Wu J, Zheng Y, Wu D (2019) Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors. Transp Res Part C Emerg Technol 100:68–87 Zhao J, Xu H, Liu H, Wu J, Zheng Y, Wu D (2019) Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors. Transp Res Part C Emerg Technol 100:68–87
40.
Zurück zum Zitat Chen Z, Wang C, Wen C, Teng X, Chen Y, Guan H, Luo H, Cao L, Li J (2016) Vehicle detection in high-resolution aerial images via sparse representation and superpixels. IEEE Trans Geosci Remote Sens 54(1):103–116 Chen Z, Wang C, Wen C, Teng X, Chen Y, Guan H, Luo H, Cao L, Li J (2016) Vehicle detection in high-resolution aerial images via sparse representation and superpixels. IEEE Trans Geosci Remote Sens 54(1):103–116
41.
Zurück zum Zitat Breiman L (2001) Random forests. Mach Learn 45(1):5–32MATH Breiman L (2001) Random forests. Mach Learn 45(1):5–32MATH
42.
Zurück zum Zitat Peter K, Samuel RB, Marcello P, Horst B (2014) Structured labels in random forests for semantic labelling and object detection. IEEE Trans Pattern Anal Mach Intell 36(10):2104–2116 Peter K, Samuel RB, Marcello P, Horst B (2014) Structured labels in random forests for semantic labelling and object detection. IEEE Trans Pattern Anal Mach Intell 36(10):2104–2116
43.
Zurück zum Zitat Timo A, Abdenour H, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041MATH Timo A, Abdenour H, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041MATH
44.
Zurück zum Zitat Xiaopeng H, Guoying Z, Pietikäinen M, Xilin C (2014) Combining LBP difference and feature correlation for texture description. IEEE Trans Image Process 23(6):2557–2568MathSciNetMATH Xiaopeng H, Guoying Z, Pietikäinen M, Xilin C (2014) Combining LBP difference and feature correlation for texture description. IEEE Trans Image Process 23(6):2557–2568MathSciNetMATH
46.
Zurück zum Zitat Gall J, Yao A, Razavi N, Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell 33(1):2188–2202 Gall J, Yao A, Razavi N, Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell 33(1):2188–2202
47.
Zurück zum Zitat Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. IEEE Trans Pattern Anal Mach Intell 30(9):1632–1646 Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. IEEE Trans Pattern Anal Mach Intell 30(9):1632–1646
48.
Zurück zum Zitat Heikkiläa M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436MATH Heikkiläa M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436MATH
49.
Zurück zum Zitat Li L, Paul F, Guoying Z, Pietikäinen M, Dewen H (2016) Extended local binary patterns for face recognition. Inf Sci 358:56–72 Li L, Paul F, Guoying Z, Pietikäinen M, Dewen H (2016) Extended local binary patterns for face recognition. Inf Sci 358:56–72
50.
Zurück zum Zitat Hassaballah M, Alshazly HA, Ali AA (2019) Ear recognition using local binary patterns: a comparative experimental study. Expert Syst Appl 118:182–200 Hassaballah M, Alshazly HA, Ali AA (2019) Ear recognition using local binary patterns: a comparative experimental study. Expert Syst Appl 118:182–200
51.
Zurück zum Zitat Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987MATH Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987MATH
52.
Zurück zum Zitat Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3):706–719MATH Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3):706–719MATH
53.
Zurück zum Zitat Averbuch A, Rabin N, Schclar A, Zheludev V (2012) Dimensionality reduction for detection of moving vehicles. Pattern Anal Appl 15(1):19–27MathSciNetMATH Averbuch A, Rabin N, Schclar A, Zheludev V (2012) Dimensionality reduction for detection of moving vehicles. Pattern Anal Appl 15(1):19–27MathSciNetMATH
54.
Zurück zum Zitat Nanni L, Lumini A, Brahnam S (2012) Survey on LBP based texture descriptors for image classification. Expert Syst Appl 39(3):3634–3641 Nanni L, Lumini A, Brahnam S (2012) Survey on LBP based texture descriptors for image classification. Expert Syst Appl 39(3):3634–3641
55.
Zurück zum Zitat Xiao L, Mingli S, Dacheng T, Zicheng L, Luming Z, Chun C, Jiajun B (2015) Random forest construction with robust semisupervised node splitting. IEEE Trans Image Process 24(1):471–483MathSciNetMATH Xiao L, Mingli S, Dacheng T, Zicheng L, Luming Z, Chun C, Jiajun B (2015) Random forest construction with robust semisupervised node splitting. IEEE Trans Image Process 24(1):471–483MathSciNetMATH
56.
Zurück zum Zitat Liu ZG, Yang Y, Ji XH (2016) Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. Signal Image Video Process 10(2):277–284 Liu ZG, Yang Y, Ji XH (2016) Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. Signal Image Video Process 10(2):277–284
58.
Zurück zum Zitat Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 31(2):319–336 Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 31(2):319–336
59.
Zurück zum Zitat Krause J, Stark M, Deng J, Fei-Fei L (2013) 3D object representations for fine-grained categorization. In: 4th IEEE international workshop on 3D representation and recognition, Sydney, Australia Krause J, Stark M, Deng J, Fei-Fei L (2013) 3D object representations for fine-grained categorization. In: 4th IEEE international workshop on 3D representation and recognition, Sydney, Australia
60.
Zurück zum Zitat Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The Pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136 Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The Pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136
61.
Zurück zum Zitat Opelt A, Pinz A, Fussenegger M, Auer P (2006) Generic object recognition with boosting. IEEE Trans Pattern Anal Mach Intell 28(3):416–431MATH Opelt A, Pinz A, Fussenegger M, Auer P (2006) Generic object recognition with boosting. IEEE Trans Pattern Anal Mach Intell 28(3):416–431MATH
62.
Zurück zum Zitat Yang L, Luo P, Change Loy C, Tang X (2015) A large-scale car dataset for fine-grained categorization and verification. In: IEEE conference on computer vision and pattern recognition, pp 3973–3981 Yang L, Luo P, Change Loy C, Tang X (2015) A large-scale car dataset for fine-grained categorization and verification. In: IEEE conference on computer vision and pattern recognition, pp 3973–3981
63.
Zurück zum Zitat Arróspide J, Salgado L, Nieto M (2012) Video analysis-based vehicle detection and tracking using an MCMC sampling framework. EURASIP J Adv Signal Process 1:2 Arróspide J, Salgado L, Nieto M (2012) Video analysis-based vehicle detection and tracking using an MCMC sampling framework. EURASIP J Adv Signal Process 1:2
64.
Zurück zum Zitat Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE conference on computer vision and pattern recognition, pp 779–788 Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE conference on computer vision and pattern recognition, pp 779–788
65.
Zurück zum Zitat Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755 Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision. Springer, Berlin, pp 740–755
66.
Zurück zum Zitat Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: IEEE conference on computer vision and pattern recognition, vol 2, pp II–264 Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: IEEE conference on computer vision and pattern recognition, vol 2, pp II–264
67.
Zurück zum Zitat Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1–3):259–289 Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1–3):259–289
Metadaten
Titel
Local binary pattern-based on-road vehicle detection in urban traffic scene
verfasst von
M. Hassaballah
Mourad A. Kenk
Ibrahim M. El-Henawy
Publikationsdatum
27.02.2020
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 4/2020
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-020-00874-9

Weitere Artikel der Ausgabe 4/2020

Pattern Analysis and Applications 4/2020 Zur Ausgabe

Premium Partner