Skip to main content
Erschienen in: Foundations of Computational Mathematics 5/2017

18.05.2016

A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time

verfasst von: Pierre Lairez

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale’s 17th problem. The main idea is to make use of the randomness contained in the input itself.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
See, e.g., [18] or [19]; unfortunately the Gaussian distribution that they assume does not fit the situation here.
 
2
I thank one of the referees for having communicated this method to me.
 
Literatur
1.
Zurück zum Zitat Michael Shub. Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric. In: Found. Comput. Math. 9.2 (2009), pp. 171–178. doi:10.1007/s10208-007-9017-6. Michael Shub. Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric. In: Found. Comput. Math. 9.2 (2009), pp. 171–178. doi:10.​1007/​s10208-007-9017-6.
2.
Zurück zum Zitat Michael Shub and Steve Smale. Complexity of Bézout’s theorem. I. Geometric aspects. In: J. Amer. Math. Soc. 6.2 (1993), pp. 459–501. doi:10.2307/2152805. Michael Shub and Steve Smale. Complexity of Bézout’s theorem. I. Geometric aspects. In: J. Amer. Math. Soc. 6.2 (1993), pp. 459–501. doi:10.​2307/​2152805.
3.
Zurück zum Zitat Michael Shub and Steve Smale. Complexity of Bezout’s theorem. II. Volumes and probabilities. In: Computational algebraic geometry (Nice, 1992). Vol. 109. Progr. Math. Birkhäuser Boston, Boston, MA, 1993, pp. 267–285. Michael Shub and Steve Smale. Complexity of Bezout’s theorem. II. Volumes and probabilities. In: Computational algebraic geometry (Nice, 1992). Vol. 109. Progr. Math. Birkhäuser Boston, Boston, MA, 1993, pp. 267–285.
4.
Zurück zum Zitat Michael Shub and Steve Smale. Complexity of Bezout’s theorem. IV. Probability of success; extensions. In: SIAM J. Numer. Anal. 33.1 (1996), pp. 128–148. doi:10.1137/0733008. Michael Shub and Steve Smale. Complexity of Bezout’s theorem. IV. Probability of success; extensions. In: SIAM J. Numer. Anal. 33.1 (1996), pp. 128–148. doi:10.​1137/​0733008.
5.
Zurück zum Zitat Michael Shub and Steve Smale. Complexity of Bezout’s theorem. V. Polynomial time. In: Theoret. Comput. Sci. 133.1 (1994). Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993), pp. 141–164. doi:10.1016/0304-3975(94)90122-8. Michael Shub and Steve Smale. Complexity of Bezout’s theorem. V. Polynomial time. In: Theoret. Comput. Sci. 133.1 (1994). Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993), pp. 141–164. doi:10.​1016/​0304-3975(94)90122-8.
6.
Zurück zum Zitat Steve Smale. Newton’s method estimates from data at one point. In: The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985). Springer, New York, 1986, pp. 185–196. doi:10.1007/978-1-4612-4984-9_13. Steve Smale. Newton’s method estimates from data at one point. In: The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985). Springer, New York, 1986, pp. 185–196. doi:10.​1007/​978-1-4612-4984-9_​13.
7.
Zurück zum Zitat Steve Smale. Mathematical problems for the next century. In: The Mathematical Intelligencer 20.2 (1998), pp. 7–15. doi:10.1007/BF03025291. Steve Smale. Mathematical problems for the next century. In: The Mathematical Intelligencer 20.2 (1998), pp. 7–15. doi:10.​1007/​BF03025291.
8.
Zurück zum Zitat Lenore Blum, Michael Shub, and Steve Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. In: Bull. Amer. Math. Soc. N.S. 21.1 (1989), pp. 1–46. doi:10.1090/S0273-0979-1989-15750-9. Lenore Blum, Michael Shub, and Steve Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. In: Bull. Amer. Math. Soc. N.S. 21.1 (1989), pp. 1–46. doi:10.​1090/​S0273-0979-1989-15750-9.
9.
Zurück zum Zitat Carlos Beltrán and Luis Miguel Pardo. Fast linear homotopy to find approximate zeros of polynomial systems. In: Found. Comput. Math. 11.1 (2011), pp. 95–129. doi:10.1007/s10208-010-9078-9. Carlos Beltrán and Luis Miguel Pardo. Fast linear homotopy to find approximate zeros of polynomial systems. In: Found. Comput. Math. 11.1 (2011), pp. 95–129. doi:10.​1007/​s10208-010-9078-9.
11.
Zurück zum Zitat Peter Bürgisser and Felipe Cucker. Condition. The geometry of numerical algorithms. Vol. 349. Grundlehren der Mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-38896-5. Peter Bürgisser and Felipe Cucker. Condition. The geometry of numerical algorithms. Vol. 349. Grundlehren der Mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013. doi:10.​1007/​978-3-642-38896-5.
12.
Zurück zum Zitat Carlos Beltrán and Luis Miguel Pardo. Smale’s 17th problem: average polynomial time to compute affine and projective solutions. In: J. Amer. Math. Soc. 22.2 (2009), pp. 363–385. doi:10.1090/S0894-0347-08-00630-9. Carlos Beltrán and Luis Miguel Pardo. Smale’s 17th problem: average polynomial time to compute affine and projective solutions. In: J. Amer. Math. Soc. 22.2 (2009), pp. 363–385. doi:10.​1090/​S0894-0347-08-00630-9.
13.
Zurück zum Zitat Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, New York, 2001, 296–305 (electronic). doi:10.1145/380752.380813. Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, New York, 2001, 296–305 (electronic). doi:10.​1145/​380752.​380813.
14.
Zurück zum Zitat Irénée Briquel, Felipe Cucker, Javier Peña, and Vera Roshchina. Fast computation of zeros of polynomial systems with bounded degree under finite-precision. In: Math. Comp. 83.287 (2014), pp. 1279–1317. doi:10.1090/S0025-5718-2013-02765-2. Irénée Briquel, Felipe Cucker, Javier Peña, and Vera Roshchina. Fast computation of zeros of polynomial systems with bounded degree under finite-precision. In: Math. Comp. 83.287 (2014), pp. 1279–1317. doi:10.​1090/​S0025-5718-2013-02765-2.
16.
Zurück zum Zitat Michael Shub. Some remarks on Bezout’s theorem and complexity theory. In: From Topology to Computation: Proceedings of the Smalefest. Springer, New York, 1993. Chap. 40, pp. 443–455. doi:10.1007/978-1-4612-2740-3_40. Michael Shub. Some remarks on Bezout’s theorem and complexity theory. In: From Topology to Computation: Proceedings of the Smalefest. Springer, New York, 1993. Chap. 40, pp. 443–455. doi:10.​1007/​978-1-4612-2740-3_​40.
17.
Zurück zum Zitat Masaaki Sibuya. A method for generating uniformly distributed points on N-dimensional spheres. In: Ann. Inst. Statist. Math. 14 (1962), pp. 81–85. doi:10.1007/BF02868626. Masaaki Sibuya. A method for generating uniformly distributed points on N-dimensional spheres. In: Ann. Inst. Statist. Math. 14 (1962), pp. 81–85. doi:10.​1007/​BF02868626.
18.
Zurück zum Zitat Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker, and Michael Shub. A stable, polynomial-time algorithm for the eigenpair problem. 2015. arXiv:1505.03290. Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker, and Michael Shub. A stable, polynomial-time algorithm for the eigenpair problem. 2015. arXiv:​1505.​03290.
19.
Zurück zum Zitat Diego Armentano and Felipe Cucker. A randomized homotopy for the Hermitian eigenpair problem. In: Found. Comput. Math. 15.1 (2015), pp. 281–312. doi:10.1007/s10208-014-9217-9. Diego Armentano and Felipe Cucker. A randomized homotopy for the Hermitian eigenpair problem. In: Found. Comput. Math. 15.1 (2015), pp. 281–312. doi:10.​1007/​s10208-014-9217-9.
20.
Zurück zum Zitat William Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix. Tech. rep. CS41. Stanford University, 1966. William Kahan. Accurate eigenvalues of a symmetric tri-diagonal matrix. Tech. rep. CS41. Stanford University, 1966.
22.
Zurück zum Zitat Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker, and Michael Shub. Condition length and complexity for the solution of polynomial systems. In: Found. Comput. Math. (2016). doi:10.1007/s10208-016-9309-9. Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker, and Michael Shub. Condition length and complexity for the solution of polynomial systems. In: Found. Comput. Math. (2016). doi:10.​1007/​s10208-016-9309-9.
23.
Metadaten
Titel
A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time
verfasst von
Pierre Lairez
Publikationsdatum
18.05.2016
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2017
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-016-9319-7

Weitere Artikel der Ausgabe 5/2017

Foundations of Computational Mathematics 5/2017 Zur Ausgabe

Premium Partner