Skip to main content
Erschienen in: Foundations of Computational Mathematics 2/2019

21.03.2018

Stable Extrapolation of Analytic Functions

verfasst von: Laurent Demanet, Alex Townsend

Erschienen in: Foundations of Computational Mathematics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper examines the problem of extrapolation of an analytic function for \(x > 1\) given \(N+1\) perturbed samples from an equally spaced grid on \([-1,1]\). For a function f on \([-1,1]\) that is analytic in a Bernstein ellipse with parameter \(\rho > 1\), and for a uniform perturbation level \(\varepsilon \) on the function samples, we construct an asymptotically best extrapolant e(x) as a least squares polynomial approximant of degree \(M^*\) determined explicitly. We show that the extrapolant e(x) converges to f(x) pointwise in the interval \(I_\rho \in [1,(\rho +\rho ^{-1})/2)\) as \(\varepsilon \rightarrow 0\), at a rate given by a x-dependent fractional power of \(\varepsilon \). More precisely, for each \(x \in I_{\rho }\) we have
$$\begin{aligned} |f(x) - e(x)| = \mathcal {O}\left( \varepsilon ^{-\log r(x) / \log \rho } \right) , \quad r(x) = \frac{x+\sqrt{x^2-1}}{\rho }, \end{aligned}$$
up to log factors, provided that an oversampling conditioning is satisfied, viz.
$$\begin{aligned} M^* \le \frac{1}{2} \sqrt{N}, \end{aligned}$$
which is known to be needed from approximation theory. In short, extrapolation enjoys a weak form of stability, up to a fraction of the characteristic smoothness length. The number of function samples does not bear on the size of the extrapolation error provided that it obeys the oversampling condition. We also show that one cannot construct an asymptotically more accurate extrapolant from equally spaced samples than e(x), using any other linear or nonlinear procedure. The proofs involve original statements on the stability of polynomial approximation in the Chebyshev basis from equally spaced samples and these are expected to be of independent interest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The relationship between R and \(\rho \) is found by considering f analytic in the so-called stadium of radius \(R>0\), i.e., the region \(S_R = \{z\in \mathbb {C}: \inf _{x\in [-1,1]} |z-x|< R\}\). If f is analytic with a Bernstein parameter \(\rho >1\), then f is also analytic in the stadium with radius \(R = (\rho +\rho ^{-1})/2-1\). Conversely, if f is analytic in \(S_R\), then f is analytic with a Bernstein parameter \(\rho = R+\sqrt{R^2+1}\). See [14, 17] for details.
 
2
Among them, least squares polynomial fitting [12], mock-Chebyshev interpolation [8], polynomial overfitting with constraints [7], and the Bernstein polynomial basis [28, Sec. 6.3]. For an extensive list, see [27].
 
3
The Chebyshev–Vandermonde matrix in (9) is the same as the familiar Vandermonde matrix except the monomials are replaced by Chebyshev polynomials.
 
4
To show that \(\kappa _2\left( \mathbf {T}_N(\underline{x}^{cheb})\right) = \sqrt{2}\), note that \(\mathbf {T}_N(\underline{x}^{cheb})\) is the discrete cosine transform (of type III) [32]. Thus, \(\mathbf {T}_N(\underline{x}^{cheb})D^{-1/2}\) is an orthogonal matrix with \(D = \mathrm{diag}(N+1,(N+1)/2,\ldots ,(N+1)/2)\).
 
5
The Legendre–Vandermonde matrix in (15) is the same as the Chebyshev–Vandermonde matrix except the Chebyshev polynomials are replaced by Legendre polynomials.
 
6
Recall that for a continuous function, h(x), the trapezium rule approximation to its integral is
$$\begin{aligned} \int _{-1}^1 h(x)dx \approx \frac{1}{N}\left( h(x_0^{equi}) + 2h(x_1^{equi})+\cdots +2h(x_{N-1}^{equi}) + h(x_N^{equi}) \right) . \end{aligned}$$
 
7
If one considers the normalized Legendre polynomials, i.e., \(\widetilde{P}_n(x) = \sqrt{n+1/2}P_n(x)\), then \(\kappa _2(\mathbf {\widetilde{P}}_M(\underline{x}^{equi})^*\mathbf {\widetilde{P}}_M(\underline{x}^{equi}))\) can be bounded above by a constant that is independent of M provided that \(M\le \tfrac{1}{2}\sqrt{N}\).
 
8
If we had instead considered the weighted Chebyshev–Vandermonde matrix given by \(B = D_1\mathbf {T}_M(\underline{x}^{equi})\) with \(w(x) = (1-x^2)^{-1/2}\), \(D_1 = \mathrm{diag}(w(\underline{x}^{equi}))\), \((D_1)_{0,0}=0\), and \((D_1)_{N,N} = 0\), then one expects that \(\kappa _2(B^*B)\) can be bounded above by a constant that is independent of M. Therefore, one is likely to be able to replace the \((M+1)^{3/2}\) factor in (26) by \(M+1\), including all the bounds in the paper that employ the inequality in (26).
 
9
Let \(A = QR\) be the reduced QR factorization of A, where \(Q=\left[ \underline{q}_0\,|\,\cdots \,|\,\underline{q}_{M}\right] \). Then, \(\Vert P\underline{\varepsilon }\Vert _2^2 = \underline{\varepsilon }^*P^*P\underline{\varepsilon } = \underline{\varepsilon }^*QQ^*\underline{\varepsilon }=\sum _{k=0}^M|\underline{q}_k^*\underline{\varepsilon }|^2\). Since \(\mathbb {E}[|\underline{q}_k^*\underline{\varepsilon }|^2]= s^2\) we have \(\mathbb {E}[\Vert P\underline{\varepsilon }\Vert _2^2]\le (M+1)s^2\).
 
Literatur
1.
Zurück zum Zitat B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon, Appl. Comput. Harm. Anal., 32 (2012), pp. 357–388.MathSciNetCrossRefMATH B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon, Appl. Comput. Harm. Anal., 32 (2012), pp. 357–388.MathSciNetCrossRefMATH
2.
Zurück zum Zitat B. Adcock and A. C. Hansen, Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients, Math. Comput., 84 (2015), pp. 237–270.MathSciNetCrossRefMATH B. Adcock and A. C. Hansen, Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients, Math. Comput., 84 (2015), pp. 237–270.MathSciNetCrossRefMATH
3.
Zurück zum Zitat B. Adcock, A. C. Hansen, and A. Shadrin, A stability barrier for reconstructions from Fourier samples, SIAM J. Numer. Anal., 52 (2014), pp. 125–139.MathSciNetCrossRefMATH B. Adcock, A. C. Hansen, and A. Shadrin, A stability barrier for reconstructions from Fourier samples, SIAM J. Numer. Anal., 52 (2014), pp. 125–139.MathSciNetCrossRefMATH
4.
Zurück zum Zitat B. Adcock and R. Platte, A mapped polynomial method for high-accuracy approximations on arbitrary grids, SIAM J. Numer. Anal., 54 (2016), pp. 2256–2281MathSciNetCrossRefMATH B. Adcock and R. Platte, A mapped polynomial method for high-accuracy approximations on arbitrary grids, SIAM J. Numer. Anal., 54 (2016), pp. 2256–2281MathSciNetCrossRefMATH
5.
Zurück zum Zitat B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 158–179.MathSciNetCrossRefMATH B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 158–179.MathSciNetCrossRefMATH
6.
Zurück zum Zitat P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, , Springer, 1995. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, , Springer, 1995.
7.
Zurück zum Zitat J. P. Boyd, Defeating the Runge phenomenon for equally spaced polynomial interpolation via Tikhonov regularization, Appl. Math. Letters, 5 (1992), pp. 57–59.MathSciNetCrossRefMATH J. P. Boyd, Defeating the Runge phenomenon for equally spaced polynomial interpolation via Tikhonov regularization, Appl. Math. Letters, 5 (1992), pp. 57–59.MathSciNetCrossRefMATH
8.
Zurück zum Zitat J. P. Boyd and J. R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part I: Single-interval schemes, Commun. Comput. Phys., 5 (2009), pp. 484–497.MathSciNetMATH J. P. Boyd and J. R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part I: Single-interval schemes, Commun. Comput. Phys., 5 (2009), pp. 484–497.MathSciNetMATH
9.
Zurück zum Zitat L. Brutman, Lebesgue functions for polynomial interpolation—a survey, Annals of Numer. Math., 4 (1996), pp. 111–128.MathSciNetMATH L. Brutman, Lebesgue functions for polynomial interpolation—a survey, Annals of Numer. Math., 4 (1996), pp. 111–128.MathSciNetMATH
10.
Zurück zum Zitat E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006) pp. 489–509.MathSciNetCrossRefMATH E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006) pp. 489–509.MathSciNetCrossRefMATH
11.
Zurück zum Zitat E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution, Communications on Pure and Applied Mathematics, 67 (2014) pp. 906–956.MathSciNetCrossRefMATH E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution, Communications on Pure and Applied Mathematics, 67 (2014) pp. 906–956.MathSciNetCrossRefMATH
12.
Zurück zum Zitat A. Cohen, M. A. Davenport, and D. Leviatan, On the stability and accuracy of least squares approximations, Found. Comput. Math., 13 (2013), pp. 819–834.MathSciNetCrossRefMATH A. Cohen, M. A. Davenport, and D. Leviatan, On the stability and accuracy of least squares approximations, Found. Comput. Math., 13 (2013), pp. 819–834.MathSciNetCrossRefMATH
13.
Zurück zum Zitat G. Dahlquist and Å. Björck, Numerical Methods, Dover edition, unbridged republication of Prentice-Hall, 2003. G. Dahlquist and Å. Björck, Numerical Methods, Dover edition, unbridged republication of Prentice-Hall, 2003.
14.
Zurück zum Zitat L. Demanet, M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, A butterfly algorithm for synthetic aperture radar imaging, SIAM J. Imag. Sci. 5-1 (2012) pp. 203–243MathSciNetCrossRefMATH L. Demanet, M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, A butterfly algorithm for synthetic aperture radar imaging, SIAM J. Imag. Sci. 5-1 (2012) pp. 203–243MathSciNetCrossRefMATH
15.
Zurück zum Zitat L. Demanet, D. Needell, and N. Nguyen, Super-resolution via superset selection and pruning, arXiv preprint arXiv:1302.6288, (2013). L. Demanet, D. Needell, and N. Nguyen, Super-resolution via superset selection and pruning, arXiv preprint arXiv:​1302.​6288, (2013).
16.
17.
Zurück zum Zitat L. Demanet and L. Ying, On Chebyshev interpolation of analytic functions, MIT technical report, 2010 L. Demanet and L. Ying, On Chebyshev interpolation of analytic functions, MIT technical report, 2010
18.
Zurück zum Zitat T. A. Driscoll, N. Hale, and L. N. Trefethen, editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014. T. A. Driscoll, N. Hale, and L. N. Trefethen, editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014.
19.
Zurück zum Zitat W. Gautschi, How (un)stable are Vandermonde systems, Asymp. Comput. Anal., 124 (1990), pp. 193–210.MathSciNetMATH W. Gautschi, How (un)stable are Vandermonde systems, Asymp. Comput. Anal., 124 (1990), pp. 193–210.MathSciNetMATH
20.
Zurück zum Zitat W. Gautschi, Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices, BIT Numer. Math., 51 (2011), pp. 103–125.MathSciNetCrossRefMATH W. Gautschi, Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices, BIT Numer. Math., 51 (2011), pp. 103–125.MathSciNetCrossRefMATH
21.
22.
Zurück zum Zitat G. Golub and C. Van Loan, Matrix Computations, John Hopkins, Baltimore, 1996.MATH G. Golub and C. Van Loan, Matrix Computations, John Hopkins, Baltimore, 1996.MATH
23.
Zurück zum Zitat N. Hale and A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic formula, SIAM J. Sci. Comput., 36 (2014), A148–A167.MathSciNetCrossRefMATH N. Hale and A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic formula, SIAM J. Sci. Comput., 36 (2014), A148–A167.MathSciNetCrossRefMATH
24.
25.
Zurück zum Zitat M. Javed and L. N. Trefethen, A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions, Proc. Roy. Soc. London A, 470 (2014). M. Javed and L. N. Trefethen, A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions, Proc. Roy. Soc. London A, 470 (2014).
26.
Zurück zum Zitat F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
27.
Zurück zum Zitat R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equally spaced samples, SIAM Review, 53 (2011), pp. 308–318.MathSciNetCrossRefMATH R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equally spaced samples, SIAM Review, 53 (2011), pp. 308–318.MathSciNetCrossRefMATH
28.
Zurück zum Zitat M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, 1981. M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, 1981.
30.
Zurück zum Zitat C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeitschrift für Mathematik und Physik, 46 (1901), pp. 224–243.MATH C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeitschrift für Mathematik und Physik, 46 (1901), pp. 224–243.MATH
31.
Zurück zum Zitat S. Schechter, On the inversion of certain matrices, Mathematical Tables and Other Aids to Computation, 13 (1959), pp. 73–77.MathSciNetCrossRefMATH S. Schechter, On the inversion of certain matrices, Mathematical Tables and Other Aids to Computation, 13 (1959), pp. 73–77.MathSciNetCrossRefMATH
33.
Zurück zum Zitat L. N. Trefethen and J. A. C. Weideman, Two results on polynomial interpolation in equally spaced points, J. Approx. Theory, 65 (1991), pp. 247–260.MathSciNetCrossRefMATH L. N. Trefethen and J. A. C. Weideman, Two results on polynomial interpolation in equally spaced points, J. Approx. Theory, 65 (1991), pp. 247–260.MathSciNetCrossRefMATH
34.
Zurück zum Zitat L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013. L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
36.
Zurück zum Zitat H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Mathematische Annalen, 71 (1912), pp. 441–479.MathSciNetCrossRefMATH H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Mathematische Annalen, 71 (1912), pp. 441–479.MathSciNetCrossRefMATH
Metadaten
Titel
Stable Extrapolation of Analytic Functions
verfasst von
Laurent Demanet
Alex Townsend
Publikationsdatum
21.03.2018
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 2/2019
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-018-9384-1

Weitere Artikel der Ausgabe 2/2019

Foundations of Computational Mathematics 2/2019 Zur Ausgabe

Premium Partner