Skip to main content
Erschienen in: Applied Composite Materials 6/2015

01.12.2015

A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

verfasst von: Ai Shigang, He Rujie, Pei Yongmao

Erschienen in: Applied Composite Materials | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions (x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kosek, M., Sejak, P.: Visualization of voids in actual C/C woven composite structure. Compos. Sci. Technol. 69, 1465–1469 (2009)CrossRef Kosek, M., Sejak, P.: Visualization of voids in actual C/C woven composite structure. Compos. Sci. Technol. 69, 1465–1469 (2009)CrossRef
2.
Zurück zum Zitat Dagli, L., Remonf, Y.: Identification of the non-linear behaviour a 4D carbon-carbon material designed for aeronautic application. Appl. Compos. Mater. 9, 1–15 (2002)CrossRef Dagli, L., Remonf, Y.: Identification of the non-linear behaviour a 4D carbon-carbon material designed for aeronautic application. Appl. Compos. Mater. 9, 1–15 (2002)CrossRef
3.
Zurück zum Zitat Fu, Q.G., Nan, X.Y., Li, H.J., Chen, X., Wang, W.L.: Pre-oxidation of carbon/carbon composites to improve the bonding strength of Ti-Ni-Si joints. Mater. Sci. Eng. A 620, 428–434 (2015)CrossRef Fu, Q.G., Nan, X.Y., Li, H.J., Chen, X., Wang, W.L.: Pre-oxidation of carbon/carbon composites to improve the bonding strength of Ti-Ni-Si joints. Mater. Sci. Eng. A 620, 428–434 (2015)CrossRef
4.
Zurück zum Zitat Don, J., Wang, Z.: Effects of anti-oxidant migration on friction and wear of C/C aircraft brakes. Appl. Compos. Mater. 16, 73–81 (2009)CrossRef Don, J., Wang, Z.: Effects of anti-oxidant migration on friction and wear of C/C aircraft brakes. Appl. Compos. Mater. 16, 73–81 (2009)CrossRef
5.
Zurück zum Zitat Zhang, L.L., Li, H.J., Li, K.Z., Zhang, S.Y., Fu, Q.G., Zhang, Y.L., Liu, S.J.: Double-layer TC4/Sr substituted hydroxyapatite bioactive coating for carbon/carbon composites. Ceram. Int. 41, 427–435 (2015)CrossRef Zhang, L.L., Li, H.J., Li, K.Z., Zhang, S.Y., Fu, Q.G., Zhang, Y.L., Liu, S.J.: Double-layer TC4/Sr substituted hydroxyapatite bioactive coating for carbon/carbon composites. Ceram. Int. 41, 427–435 (2015)CrossRef
6.
Zurück zum Zitat Ren, X.R., Li, H.J., Fu, Q.G., Li, K.Z.: Oxidation protective TaB2-SiC gradient coating to protect SiC-Si coated carbon/carbon composites against oxidation. Compos. Part B 66, 174–179 (2014)CrossRef Ren, X.R., Li, H.J., Fu, Q.G., Li, K.Z.: Oxidation protective TaB2-SiC gradient coating to protect SiC-Si coated carbon/carbon composites against oxidation. Compos. Part B 66, 174–179 (2014)CrossRef
7.
Zurück zum Zitat Yin, J., Zhang, H.B., Xiong, X., Zuo, J.L., Huang, B.Y.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237–245 (2009)CrossRef Yin, J., Zhang, H.B., Xiong, X., Zuo, J.L., Huang, B.Y.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237–245 (2009)CrossRef
8.
Zurück zum Zitat Remond, Y., Wagner, C.: Two experimental methods to measure the damaged subsurface of carbon–carbon brake discs. Appl. Compos. Mater. 6, 185–201 (1999)CrossRef Remond, Y., Wagner, C.: Two experimental methods to measure the damaged subsurface of carbon–carbon brake discs. Appl. Compos. Mater. 6, 185–201 (1999)CrossRef
9.
Zurück zum Zitat Bamborin, M.Y., Kolesnikov, S.A.: Formation of the thermal conductivity of carbon-carbon composites. Refract. Ind. Ceram. 54(1), 29–34 (2013)CrossRef Bamborin, M.Y., Kolesnikov, S.A.: Formation of the thermal conductivity of carbon-carbon composites. Refract. Ind. Ceram. 54(1), 29–34 (2013)CrossRef
10.
Zurück zum Zitat Al-Nassar, Y.N.: Prediction of thermal conductivity of air voided-fiber-reinforced composite laminates part II: 3D simulation. Heat Mass Transf. 43, 117–122 (2006)CrossRef Al-Nassar, Y.N.: Prediction of thermal conductivity of air voided-fiber-reinforced composite laminates part II: 3D simulation. Heat Mass Transf. 43, 117–122 (2006)CrossRef
11.
Zurück zum Zitat Wang, M., Kang, Q.J., Pan, N.: Thermal conductivity enhancement of carbon fiber composites. Apll. Therm. Eng. 29, 418–421 (2009)CrossRef Wang, M., Kang, Q.J., Pan, N.: Thermal conductivity enhancement of carbon fiber composites. Apll. Therm. Eng. 29, 418–421 (2009)CrossRef
12.
Zurück zum Zitat Alghamdi, A., Mummery, P., Sheikh, M.: A.: Multi-scale 3D image-based modelling of a carbon/carbon composite. Modelling Simul. Mater. Sci. Eng. 21, 085014 (2013) Alghamdi, A., Mummery, P., Sheikh, M.: A.: Multi-scale 3D image-based modelling of a carbon/carbon composite. Modelling Simul. Mater. Sci. Eng. 21, 085014 (2013)
13.
Zurück zum Zitat Luo, R.Y., Liu, T., Li, J.S., Zhang, H.B., Chen, Z.J., Tian, G.L.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42, 2887–2895 (2004)CrossRef Luo, R.Y., Liu, T., Li, J.S., Zhang, H.B., Chen, Z.J., Tian, G.L.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42, 2887–2895 (2004)CrossRef
14.
Zurück zum Zitat Qiu, L., Zheng, X.H., Zhu, J., Su, G.P., Tang, D.W.: The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon 51, 265–273 (2013)CrossRef Qiu, L., Zheng, X.H., Zhu, J., Su, G.P., Tang, D.W.: The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon 51, 265–273 (2013)CrossRef
15.
Zurück zum Zitat Gallego, N.C., Edie, D.D., Nysten, B., Issi, J.P., Treleaven, J.W., Deshpande, G.V.: The thermal conductivity of ribbon-shaped carbon fibers. Carbon 38, 1003–1010 (2000)CrossRef Gallego, N.C., Edie, D.D., Nysten, B., Issi, J.P., Treleaven, J.W., Deshpande, G.V.: The thermal conductivity of ribbon-shaped carbon fibers. Carbon 38, 1003–1010 (2000)CrossRef
16.
Zurück zum Zitat Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68, 413–425 (2014)CrossRef Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68, 413–425 (2014)CrossRef
17.
Zurück zum Zitat Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon 68, 426–439 (2014)CrossRef Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon 68, 426–439 (2014)CrossRef
18.
Zurück zum Zitat Chen, J., Xion, X., Xiao, P.: Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes. Mater. Des. 30, 1413–1416 (2009)CrossRef Chen, J., Xion, X., Xiao, P.: Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes. Mater. Des. 30, 1413–1416 (2009)CrossRef
19.
Zurück zum Zitat Silva, C., Marotta, E., Schuller, M.: In-Plane thermal conductivity in thin carbon fiber composites. J. Thermophys. Heat Transf. 21(3), 460–467 (2007)CrossRef Silva, C., Marotta, E., Schuller, M.: In-Plane thermal conductivity in thin carbon fiber composites. J. Thermophys. Heat Transf. 21(3), 460–467 (2007)CrossRef
20.
Zurück zum Zitat Grujicic, M., Zhao, C.L., Dusel, E.C., Morgan, D.R., Miller, R.S., Beasley, D.E.: Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Sci. 41, 8244–8256 (2006)CrossRef Grujicic, M., Zhao, C.L., Dusel, E.C., Morgan, D.R., Miller, R.S., Beasley, D.E.: Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Sci. 41, 8244–8256 (2006)CrossRef
21.
Zurück zum Zitat Kumlutaş, D., Tavman, İ.H., Çoban, M.T.: Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 63(1), 113–117 (2003)CrossRef Kumlutaş, D., Tavman, İ.H., Çoban, M.T.: Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 63(1), 113–117 (2003)CrossRef
22.
Zurück zum Zitat Zhou, W.Y., Qi, S.H., Tu, C.C., Zhao, H.Z.: Novel heat conductive composite silicon rubber. J. Appl. Polym. Sci. 104(4), 2478–2483 (2007)CrossRef Zhou, W.Y., Qi, S.H., Tu, C.C., Zhao, H.Z.: Novel heat conductive composite silicon rubber. J. Appl. Polym. Sci. 104(4), 2478–2483 (2007)CrossRef
23.
Zurück zum Zitat Charles, J.A., Wilson, D.W.: A model of passive thermal nondestrictive evaluation of composite laminates. Polym. Compos. 2, 105 (1981)CrossRef Charles, J.A., Wilson, D.W.: A model of passive thermal nondestrictive evaluation of composite laminates. Polym. Compos. 2, 105 (1981)CrossRef
24.
Zurück zum Zitat Deng, F., Zheng, Q.S., Wang, L.F., Nan, C.W.: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90(2), 021914 (2007)CrossRef Deng, F., Zheng, Q.S., Wang, L.F., Nan, C.W.: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90(2), 021914 (2007)CrossRef
25.
Zurück zum Zitat Turias, I.J., Gutierrez, J.M., Galindo, P.L.: Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks. Compos. Sci. Technol. 65(3–4), 609–619 (2005)CrossRef Turias, I.J., Gutierrez, J.M., Galindo, P.L.: Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks. Compos. Sci. Technol. 65(3–4), 609–619 (2005)CrossRef
26.
Zurück zum Zitat Kulkarni, M.R., Brady, R.P.: A model of global thermal conductivity in laminated carbon/carbon composites. Compos. Sci. Technol. 57, 277–285 (1997)CrossRef Kulkarni, M.R., Brady, R.P.: A model of global thermal conductivity in laminated carbon/carbon composites. Compos. Sci. Technol. 57, 277–285 (1997)CrossRef
27.
Zurück zum Zitat Vorel, J., Šejnoha, M.: Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method. Struct. Eng. Mech. 33(4), 429–446 (2009)CrossRef Vorel, J., Šejnoha, M.: Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method. Struct. Eng. Mech. 33(4), 429–446 (2009)CrossRef
28.
Zurück zum Zitat Jiang, D.L., Li, L.T., Ouyang, S.X., Shi, J.L.: China Materials Engineering Canon: Inorganic Non-metallic Materials Engineering, vol. 9, pp. 470–472. Chemical Industry Press, Beijing (2006). in Chinese Jiang, D.L., Li, L.T., Ouyang, S.X., Shi, J.L.: China Materials Engineering Canon: Inorganic Non-metallic Materials Engineering, vol. 9, pp. 470–472. Chemical Industry Press, Beijing (2006). in Chinese
29.
Zurück zum Zitat Pradere, C., Bastale, J.C., Goyhénèche, J.M., Pailler, R., Dilhaire, S.: Thermal properties of carbon fibers at very high temperature. Carbon 47, 737–743 (2009)CrossRef Pradere, C., Bastale, J.C., Goyhénèche, J.M., Pailler, R., Dilhaire, S.: Thermal properties of carbon fibers at very high temperature. Carbon 47, 737–743 (2009)CrossRef
30.
Zurück zum Zitat Ai, S.G., Fang, D.N., He, R.J., Pei, Y.M.: Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites. Compos. Part B 71, 113–121 (2015)CrossRef Ai, S.G., Fang, D.N., He, R.J., Pei, Y.M.: Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites. Compos. Part B 71, 113–121 (2015)CrossRef
31.
Zurück zum Zitat Ai, S.G., Zhu, X.L., Mao, Y.Q., Pei, Y.M., Fang, D.N.: Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment. Appl. Compos. Mater. 21(4), 603–614 (2014)CrossRef Ai, S.G., Zhu, X.L., Mao, Y.Q., Pei, Y.M., Fang, D.N.: Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment. Appl. Compos. Mater. 21(4), 603–614 (2014)CrossRef
32.
Zurück zum Zitat Radcliffe, D.J., Rosenberg, H.M.: The thermal conductivity of glass-fiber and carbon-fiber/epoxy composites from 2 to 80 K. Cryogenics 22(5), 245 (1982)CrossRef Radcliffe, D.J., Rosenberg, H.M.: The thermal conductivity of glass-fiber and carbon-fiber/epoxy composites from 2 to 80 K. Cryogenics 22(5), 245 (1982)CrossRef
Metadaten
Titel
A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature
verfasst von
Ai Shigang
He Rujie
Pei Yongmao
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 6/2015
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-015-9438-3

Weitere Artikel der Ausgabe 6/2015

Applied Composite Materials 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.