Skip to main content
Erschienen in: Applied Composite Materials 6/2020

03.11.2020

Fabrication and Characterization of Hemp Fibre Based 3D Printed Honeycomb Sandwich Structure by FDM Process

verfasst von: Sheedev Antony, Abel Cherouat, Guillaume Montay

Erschienen in: Applied Composite Materials | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural fibre composites have been trending in the industries recently due to their better recyclability, renewability, biodegradability. Fused Deposition Modelling (FDM) is one of the widely used additive manufacturing process for the fabrication of simple and complex structures. In this study, hemp/PLA 3D printed honeycomb sandwich structures were fabricated by FDM process and mechanical behaviour was characterized. Initially, the tensile behaviour of hemp fibre/PLA filaments and the 3D printed composite specimens with an infill angle of 0°/90°, -45°/ + 45° were investigated. Honeycomb cores were fabricated and their mechanical behaviour in flatwise, edgewise directions were analysed. Later, honeycomb sandwich structures were fabricated using core and skin parts. Compression and 4-Point bending tests were performed to characterize the mechanical behaviour. Analytical analysis was also performed to predict the mechanical properties of the honeycomb sandwich structure knowing the properties of the cell wall material. Some small-scaled automotive and aerospace prototypes were fabricated to assure the application of this methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)CrossRef Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)CrossRef
2.
Zurück zum Zitat ASTM F2792–12a: 2012, Standard terminology for additive manufacturing technologies ASTM F2792–12a: 2012, Standard terminology for additive manufacturing technologies
3.
Zurück zum Zitat Hague, R., Mansour, S., Saleh, N.: Design opportunities with rapid manufacturing. Assembly Automation 23(4), 346–356 (2003)CrossRef Hague, R., Mansour, S., Saleh, N.: Design opportunities with rapid manufacturing. Assembly Automation 23(4), 346–356 (2003)CrossRef
4.
Zurück zum Zitat Brooks, H., Molony, S.: Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Mater. Des. 90, 276–283 (2016)CrossRef Brooks, H., Molony, S.: Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Mater. Des. 90, 276–283 (2016)CrossRef
5.
Zurück zum Zitat Masood, S.H.: Advances in fused deposition modeling. Comprehensive Materials Processing. 10(2014), 69–91 (2014)CrossRef Masood, S.H.: Advances in fused deposition modeling. Comprehensive Materials Processing. 10(2014), 69–91 (2014)CrossRef
6.
Zurück zum Zitat Galantucci, L.M., Lavecchia, F., Percoco, G.: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. 59(1), 247–250 (2010)CrossRef Galantucci, L.M., Lavecchia, F., Percoco, G.: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. 59(1), 247–250 (2010)CrossRef
7.
Zurück zum Zitat Brischetto, S., Ferro, C.G., Torre, R., Maggiore, P.: 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures 5(1), 80–94 (2018)CrossRef Brischetto, S., Ferro, C.G., Torre, R., Maggiore, P.: 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures 5(1), 80–94 (2018)CrossRef
8.
Zurück zum Zitat Brischetto, S., Torre, R.: Honeycomb Sandwich Specimens Made of PLA and Produced Via 3D FDM Printing Process: An Experimental Study. Journal of Aircraft and Spacecraft Technology 4, 54–69 (2020)CrossRef Brischetto, S., Torre, R.: Honeycomb Sandwich Specimens Made of PLA and Produced Via 3D FDM Printing Process: An Experimental Study. Journal of Aircraft and Spacecraft Technology 4, 54–69 (2020)CrossRef
9.
Zurück zum Zitat Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)CrossRef Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003)CrossRef
10.
Zurück zum Zitat Zhong, W., Li, F., Zhang, Z., Song, L., Li, Z.: Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng., A 301(2), 125–130 (2001)CrossRef Zhong, W., Li, F., Zhang, Z., Song, L., Li, Z.: Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng., A 301(2), 125–130 (2001)CrossRef
11.
Zurück zum Zitat Gray, R.W., IV., Baird, D.G., Bøhn, J.H.: Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym. Compos. 19(4), 383–394 (1998)CrossRef Gray, R.W., IV., Baird, D.G., Bøhn, J.H.: Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym. Compos. 19(4), 383–394 (1998)CrossRef
12.
Zurück zum Zitat Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific reports 6, 23058 (2016)CrossRef Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific reports 6, 23058 (2016)CrossRef
13.
Zurück zum Zitat Le Duigou, A., Barbé, A., Guillou, E., Castro, M.: 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 180, 107884 (2019)CrossRef Le Duigou, A., Barbé, A., Guillou, E., Castro, M.: 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 180, 107884 (2019)CrossRef
14.
Zurück zum Zitat Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Van Vuure, A.W.: Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym. Compos. 40(5), 1951–1963 (2019)CrossRef Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Van Vuure, A.W.: Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym. Compos. 40(5), 1951–1963 (2019)CrossRef
15.
Zurück zum Zitat Antony, S., Cherouat, A., Montay, G.: Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications. Advances in aircraft and spacecraft science 6(2), 87–103 (2019) Antony, S., Cherouat, A., Montay, G.: Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications. Advances in aircraft and spacecraft science 6(2), 87–103 (2019)
16.
Zurück zum Zitat Zuhri, M.Y.M., Guan, Z.W., Cantwell, W.J.: The mechanical properties of natural fibre based honeycomb core materials. Compos. B Eng. 58, 1–9 (2014)CrossRef Zuhri, M.Y.M., Guan, Z.W., Cantwell, W.J.: The mechanical properties of natural fibre based honeycomb core materials. Compos. B Eng. 58, 1–9 (2014)CrossRef
17.
Zurück zum Zitat Stocchi, A., Colabella, L., Cisilino, A., Álvarez, V.: Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Mater. Des. 55, 394–403 (2014)CrossRef Stocchi, A., Colabella, L., Cisilino, A., Álvarez, V.: Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Mater. Des. 55, 394–403 (2014)CrossRef
18.
Zurück zum Zitat Petrone, G., Rao, S., De Rosa, S., Mace, B.R., Franco, F., Bhattacharyya, D.: Initial experimental investigations on natural fibre reinforced honeycomb core panels. Compos. B Eng. 55, 400–406 (2013)CrossRef Petrone, G., Rao, S., De Rosa, S., Mace, B.R., Franco, F., Bhattacharyya, D.: Initial experimental investigations on natural fibre reinforced honeycomb core panels. Compos. B Eng. 55, 400–406 (2013)CrossRef
19.
Zurück zum Zitat Vitale, J.P., Francucci, G., Xiong, J., Stocchi, A.: Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Compos. A Appl. Sci. Manuf. 94, 217–225 (2017)CrossRef Vitale, J.P., Francucci, G., Xiong, J., Stocchi, A.: Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels. Compos. A Appl. Sci. Manuf. 94, 217–225 (2017)CrossRef
20.
Zurück zum Zitat Roslan, S.A.H., Hassan, M.Z., Rasid, Z.A., Zaki, S.A., Daud, Y., Aziz, S., Sarip, S. and Ismail, Z., 2015. Mechanical properties of bamboo reinforced epoxy sandwich structure composites. International Journal of Automotive & Mechanical Engineering, 12, pp. 2882-2892. Roslan, S.A.H., Hassan, M.Z., Rasid, Z.A., Zaki, S.A., Daud, Y., Aziz, S., Sarip, S. and Ismail, Z., 2015. Mechanical properties of bamboo reinforced epoxy sandwich structure composites. International Journal of Automotive & Mechanical Engineering, 12, pp. 2882-2892.
21.
Zurück zum Zitat Du, Y., Yan, N., Kortschot, M.T.: An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos. Struct. 106, 160–166 (2013)CrossRef Du, Y., Yan, N., Kortschot, M.T.: An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos. Struct. 106, 160–166 (2013)CrossRef
23.
Zurück zum Zitat Antony, S., Cherouat, A., Montay, G.: Experimental, analytical and numerical analysis to investigate the tensile behaviour of hemp fibre yarns. Compos. Struct. 202, 482–490 (2018)CrossRef Antony, S., Cherouat, A., Montay, G.: Experimental, analytical and numerical analysis to investigate the tensile behaviour of hemp fibre yarns. Compos. Struct. 202, 482–490 (2018)CrossRef
24.
Zurück zum Zitat ASTM D638–14, 2013. ASTM D638–14, standard test method for tensile properties of plastics ASTM D638–14, 2013. ASTM D638–14, standard test method for tensile properties of plastics
25.
Zurück zum Zitat Cantrell, J. T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J, & Ifju, P. G. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23 (4) 811-824 (2017)CrossRef Cantrell, J. T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J, & Ifju, P. G. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23 (4) 811-824 (2017)CrossRef
26.
Zurück zum Zitat Lederle, F., Meyer, F., Brunotte, G.P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Progress in Additive Manufacturing 1(1–2), 3–7 (2016)CrossRef Lederle, F., Meyer, F., Brunotte, G.P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Progress in Additive Manufacturing 1(1–2), 3–7 (2016)CrossRef
27.
Zurück zum Zitat Salem, T.F., Tirkes, S., Akar, A.O., Tayfun, U.: Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. e-Polymers 20(1), 133–143 (2020)CrossRef Salem, T.F., Tirkes, S., Akar, A.O., Tayfun, U.: Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. e-Polymers 20(1), 133–143 (2020)CrossRef
28.
Zurück zum Zitat Xu, S., Beynon, J.H., Ruan, D., Lu, G.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)CrossRef Xu, S., Beynon, J.H., Ruan, D., Lu, G.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)CrossRef
29.
Zurück zum Zitat Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 382(1782), 25–42 (1982) Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 382(1782), 25–42 (1982)
30.
Zurück zum Zitat Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)CrossRef Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)CrossRef
31.
Zurück zum Zitat Bitzer T. Sandwich fabrication. In: Honeycomb Technology. Springer, Dordrecht (1997) Bitzer T. Sandwich fabrication. In: Honeycomb Technology. Springer, Dordrecht (1997)
32.
Zurück zum Zitat Fan, X., Verpoest, I., Vandepitte, D.: Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J. Sandwich Struct. Mater. 8(5), 437–458 (2006)CrossRef Fan, X., Verpoest, I., Vandepitte, D.: Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J. Sandwich Struct. Mater. 8(5), 437–458 (2006)CrossRef
33.
Zurück zum Zitat Wierzbicki, T.: Crushing analysis of metal honeycombs. Int. J. Impact Eng 1(2), 157–174 (1983)CrossRef Wierzbicki, T.: Crushing analysis of metal honeycombs. Int. J. Impact Eng 1(2), 157–174 (1983)CrossRef
Metadaten
Titel
Fabrication and Characterization of Hemp Fibre Based 3D Printed Honeycomb Sandwich Structure by FDM Process
verfasst von
Sheedev Antony
Abel Cherouat
Guillaume Montay
Publikationsdatum
03.11.2020
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 6/2020
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-020-09837-z

Weitere Artikel der Ausgabe 6/2020

Applied Composite Materials 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.