Skip to main content
Erschienen in: BIT Numerical Mathematics 4/2014

01.12.2014

A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems

verfasst von: Yoshio Komori, Kevin Burrage

Erschienen in: BIT Numerical Mathematics | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multi-dimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)CrossRefMATHMathSciNet Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)CrossRefMATHMathSciNet
4.
5.
Zurück zum Zitat Adamu, I.A.: Numerical approximation of SDEs and stochastic Swift-Hohenberg equation. Ph.D. thesis, Heriot-Watt University (2011) Adamu, I.A.: Numerical approximation of SDEs and stochastic Swift-Hohenberg equation. Ph.D. thesis, Heriot-Watt University (2011)
6.
Zurück zum Zitat Alfonsi, A.: High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp. 79(269), 209–237 (2010)CrossRefMATHMathSciNet Alfonsi, A.: High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp. 79(269), 209–237 (2010)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)MATH Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)MATH
8.
Zurück zum Zitat Bayer, C., Szepessy, A., Tempone, R.: Adaptive weak approximation of reflected and stopped diffusions. Monte Carlo Methods Appl. 16(1), 1–67 (2010)CrossRefMATHMathSciNet Bayer, C., Szepessy, A., Tempone, R.: Adaptive weak approximation of reflected and stopped diffusions. Monte Carlo Methods Appl. 16(1), 1–67 (2010)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Biscay, R., Jimenez, J.C., Riera, J.J., Valdes, P.A.: Local linearization method for numerical solution of stochastic differential equations. Ann. Inst. Statist. Math. 48(4), 631–644 (1996)CrossRefMATHMathSciNet Biscay, R., Jimenez, J.C., Riera, J.J., Valdes, P.A.: Local linearization method for numerical solution of stochastic differential equations. Ann. Inst. Statist. Math. 48(4), 631–644 (1996)CrossRefMATHMathSciNet
10.
Zurück zum Zitat Brennan, T., Fink, M., Rodriguez, B.: Multiscale modelling of drug-induced effects on cardiac electrophysiological activity. Eur. J. Pharm. Sci. 36(1), 62–77 (2009)CrossRef Brennan, T., Fink, M., Rodriguez, B.: Multiscale modelling of drug-induced effects on cardiac electrophysiological activity. Eur. J. Pharm. Sci. 36(1), 62–77 (2009)CrossRef
11.
Zurück zum Zitat Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)CrossRefMATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)CrossRefMATH
12.
Zurück zum Zitat Carbonell, F., Jimenez, J.C., Biscay, R.J.: Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes. J. Comput. Appl. Math. 197(2), 578–596 (2006)CrossRefMATHMathSciNet Carbonell, F., Jimenez, J.C., Biscay, R.J.: Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes. J. Comput. Appl. Math. 197(2), 578–596 (2006)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Chen, Y., Ye, X.: Projection onto a simplex. e-print, ArXiv:1101.6081v2 (2011) Chen, Y., Ye, X.: Projection onto a simplex. e-print, ArXiv:1101.6081v2 (2011)
14.
Zurück zum Zitat Cruz, dl, Biscay, R.J., Jimenez, J.C., Carbonell, F., Ozaki, T.: High order local linearization methods: an approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise. BIT 50(3), 509–539 (2010)CrossRefMATHMathSciNet Cruz, dl, Biscay, R.J., Jimenez, J.C., Carbonell, F., Ozaki, T.: High order local linearization methods: an approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise. BIT 50(3), 509–539 (2010)CrossRefMATHMathSciNet
15.
Zurück zum Zitat Dangerfield, C., Kay, D., Burrage, K.: Modeling ion channel dynamics through reflected stochastic differential equations. Phys. Rev. E85, 051907 (2012) Dangerfield, C., Kay, D., Burrage, K.: Modeling ion channel dynamics through reflected stochastic differential equations. Phys. Rev. E85, 051907 (2012)
16.
Zurück zum Zitat Ehle, B.L., Lawson, J.D.: Generalized Runge–Kutta processes for stiff initial-value problems. IMA J. Appl. Math. 16(1), 11–21 (1975)CrossRefMATHMathSciNet Ehle, B.L., Lawson, J.D.: Generalized Runge–Kutta processes for stiff initial-value problems. IMA J. Appl. Math. 16(1), 11–21 (1975)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRef Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRef
19.
Zurück zum Zitat Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)CrossRefMATHMathSciNet Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)CrossRefMATHMathSciNet
20.
Zurück zum Zitat Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)CrossRefMATHMathSciNet Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)CrossRefMATHMathSciNet
22.
Zurück zum Zitat van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit \(m\)-stage Runge–Kutta methods for large \(m\)-values. Z. Angew. Math. Mech. 60, 479–485 (1980)CrossRefMATHMathSciNet van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit \(m\)-stage Runge–Kutta methods for large \(m\)-values. Z. Angew. Math. Mech. 60, 479–485 (1980)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Ilie, S., Morshed, M.: Automatic simulation of the chemical Langevin equation. Appl. Math. 4(1A), 235–241 (2013)CrossRef Ilie, S., Morshed, M.: Automatic simulation of the chemical Langevin equation. Appl. Math. 4(1A), 235–241 (2013)CrossRef
24.
Zurück zum Zitat Jentzen, A., Kloeden, E.: Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465, 649–667 (2009)CrossRefMATHMathSciNet Jentzen, A., Kloeden, E.: Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465, 649–667 (2009)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Jimenez, J.C.: A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations. Appl. Math. Lett. 15(6), 775–780 (2002)CrossRefMATHMathSciNet Jimenez, J.C.: A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations. Appl. Math. Lett. 15(6), 775–780 (2002)CrossRefMATHMathSciNet
26.
Zurück zum Zitat Jimenez, J.C., de la Cruz Cancino, H.: Convergence rate of strong local linearization schemes for stochastic differential equations with additive noise. BIT 52(2), 357–382 (2012) Jimenez, J.C., de la Cruz Cancino, H.: Convergence rate of strong local linearization schemes for stochastic differential equations with additive noise. BIT 52(2), 357–382 (2012)
27.
Zurück zum Zitat Jimenez, J.C., Shoji, I., Ozaki, T.: Simulation of stochastic differential equations through the local linearization method. a comparative study. J. Stat. Phys. 94(3–4), 587–602 (1999)CrossRefMATHMathSciNet Jimenez, J.C., Shoji, I., Ozaki, T.: Simulation of stochastic differential equations through the local linearization method. a comparative study. J. Stat. Phys. 94(3–4), 587–602 (1999)CrossRefMATHMathSciNet
28.
Zurück zum Zitat Kiehn, J., Lacerda, A.E., Brown, A.M.: Pathways of HERG inactivation. Am. J. Physiol. Heart Circ. Physiol. 277(1), 199–210 (1999) Kiehn, J., Lacerda, A.E., Brown, A.M.: Pathways of HERG inactivation. Am. J. Physiol. Heart Circ. Physiol. 277(1), 199–210 (1999)
29.
Zurück zum Zitat Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1999). Corrected Third Printing. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1999). Corrected Third Printing.
30.
Zurück zum Zitat Komori, Y., Burrage, K.: Weak second order S-ROCK methods for Stratonovich stochastic differential equations. J. Comput. Appl. Math. 236(11), 2895–2908 (2012)CrossRefMATHMathSciNet Komori, Y., Burrage, K.: Weak second order S-ROCK methods for Stratonovich stochastic differential equations. J. Comput. Appl. Math. 236(11), 2895–2908 (2012)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Komori, Y., Burrage, K.: Strong first order S-ROCK methods for stochastic differential equations. J. Comput. Appl. Math. 242, 261–274 (2013)CrossRefMATHMathSciNet Komori, Y., Burrage, K.: Strong first order S-ROCK methods for stochastic differential equations. J. Comput. Appl. Math. 242, 261–274 (2013)CrossRefMATHMathSciNet
32.
Zurück zum Zitat Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967)CrossRefMATHMathSciNet Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967)CrossRefMATHMathSciNet
33.
Zurück zum Zitat Mélykúti, B., Burrage, K., Zygalakis, K.C.: Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation. J. Chem. Phys. 132(16), 164109 (2010)CrossRef Mélykúti, B., Burrage, K., Zygalakis, K.C.: Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation. J. Chem. Phys. 132(16), 164109 (2010)CrossRef
34.
Zurück zum Zitat Mora, C.M.: Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25(3), 486–506 (2005)CrossRefMATHMathSciNet Mora, C.M.: Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25(3), 486–506 (2005)CrossRefMATHMathSciNet
35.
Zurück zum Zitat Pettersson, R.: Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process Appl. 59(2), 295–308 (1995)CrossRefMATHMathSciNet Pettersson, R.: Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process Appl. 59(2), 295–308 (1995)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Pope, D.: An exponential method of numerical integration of ordinary differential equations. Comm. ACM 6(8), 491–493 (1963)CrossRefMATHMathSciNet Pope, D.: An exponential method of numerical integration of ordinary differential equations. Comm. ACM 6(8), 491–493 (1963)CrossRefMATHMathSciNet
37.
Zurück zum Zitat Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)CrossRefMATHMathSciNet Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)CrossRefMATHMathSciNet
38.
Zurück zum Zitat Shi, C., Xiao, Y., Zhang, C.: The convergence and MS stability of exponential Euler method for semilinear stochastic differential equations. Abstr. Appl. Anal. 2012, 35040701 (2012)MathSciNet Shi, C., Xiao, Y., Zhang, C.: The convergence and MS stability of exponential Euler method for semilinear stochastic differential equations. Abstr. Appl. Anal. 2012, 35040701 (2012)MathSciNet
39.
Zurück zum Zitat Shoji, I.: A note on convergence rate of a linearization method for the discretization of stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2667–2671 (2011)CrossRefMATHMathSciNet Shoji, I.: A note on convergence rate of a linearization method for the discretization of stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2667–2671 (2011)CrossRefMATHMathSciNet
40.
Zurück zum Zitat Skorohod, A.V.: Stochastic equations for diffusion processes with a boundary. Theory Probab. Appl. 6, 287–298 (1961)MathSciNet Skorohod, A.V.: Stochastic equations for diffusion processes with a boundary. Theory Probab. Appl. 6, 287–298 (1961)MathSciNet
41.
Zurück zum Zitat Skorohod, A.V.: Stochastic equations for diffusion processes with boundaries II. Theory Probab. Appl. 7, 5–25 (1962)MathSciNet Skorohod, A.V.: Stochastic equations for diffusion processes with boundaries II. Theory Probab. Appl. 7, 5–25 (1962)MathSciNet
42.
Zurück zum Zitat Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9(1), 163–177 (1979)MATHMathSciNet Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9(1), 163–177 (1979)MATHMathSciNet
43.
Zurück zum Zitat Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Prob. 11(2), 470–487 (2001)CrossRefMATHMathSciNet Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Prob. 11(2), 470–487 (2001)CrossRefMATHMathSciNet
Metadaten
Titel
A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems
verfasst von
Yoshio Komori
Kevin Burrage
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 4/2014
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-014-0485-1

Weitere Artikel der Ausgabe 4/2014

BIT Numerical Mathematics 4/2014 Zur Ausgabe

Premium Partner