Skip to main content
Erschienen in: Discover Computing 4/2020

19.06.2020

Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering

verfasst von: Zhipeng Zhang, Yao Zhang, Yonggong Ren

Erschienen in: Discover Computing | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recommender system (RS) can produce personalized service to users by analyzing their historical information. User-based collaborative filtering (UBCF) approach is widely utilized in practical RSs because of its excellent performance. However, the traditional UBCF suffers from several inherent problems, such as data sparsity and new user cold start. In this paper, we propose a novel approach, namely covering reduction collaborative filtering, to solve data sparsity and new user cold start problems in UBCF. First, we define the redundant users in a new user’s neighborhood through a detailed analysis on two real-world datasets (i.e., MovieLens and Netflix). Then, we analyze the intrinsic connection between redundant users in UBCF and redundant elements in covering-based rough sets, and transform the redundant user removal issue into the redundant element reduction. Furthermore, a cover is built for each new user according to the information of candidate neighbors. And the covering reduction algorithm is employed to remove the redundant elements in the cover of each new user, removing all reducible elements in a cover means redundant users in the neighborhood of a new user are removed. Finally, rating scores for unrated items are predicted by aggregating the ratings of remaining users after reduction. And items with the highest predicted rating scores will be recommended to the new user. Experimental results suggest that for the sparse datasets that often occur in real RSs, the proposed approach outperforms those of existing work and can provide recommendations for a new user with satisfactory accuracy and diversity simultaneously without requiring any other special additional information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adomavicius, G., & Kwon, Y. O. (2012). Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering, 24, 896–911.CrossRef Adomavicius, G., & Kwon, Y. O. (2012). Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering, 24, 896–911.CrossRef
Zurück zum Zitat Amatriain, X., & Basilico, J. (2016). Past, present, and future of recommender systems: An industry perspective. In Proceedings of the 10th ACM conference on recommender systems (pp. 211–214). Amatriain, X., & Basilico, J. (2016). Past, present, and future of recommender systems: An industry perspective. In Proceedings of the 10th ACM conference on recommender systems (pp. 211–214).
Zurück zum Zitat Bell, R. M., & Koren, Y. (2007). Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9, 75–79.CrossRef Bell, R. M., & Koren, Y. (2007). Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9, 75–79.CrossRef
Zurück zum Zitat Bellogin, A., Fernandez-Tobias, I., Cantador, I., & Tomeo, P. (2018). Neighbor selection for cold users in collaborative filtering with positive-only feedback. In Proceedings of the Spanish association for artificial intelligence (pp. 3–12). Bellogin, A., Fernandez-Tobias, I., Cantador, I., & Tomeo, P. (2018). Neighbor selection for cold users in collaborative filtering with positive-only feedback. In Proceedings of the Spanish association for artificial intelligence (pp. 3–12).
Zurück zum Zitat Bobadilla, J., & Ortega, F. (2013). Recommender system survey. Knowledge-Based Systems, 46, 109–132.CrossRef Bobadilla, J., & Ortega, F. (2013). Recommender system survey. Knowledge-Based Systems, 46, 109–132.CrossRef
Zurück zum Zitat Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238.CrossRef Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238.CrossRef
Zurück zum Zitat Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithm for collaborative filtering. In Proceedings of the 14th conference on uncertainty in artificial intelligence (pp. 43–52). Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithm for collaborative filtering. In Proceedings of the 14th conference on uncertainty in artificial intelligence (pp. 43–52).
Zurück zum Zitat Duma, M., & Twala, B. (2019). Sparseness reduction in collaborative filtering using a nearest neighbor artificial immune system with genetic algorithms. Expert Systems with Applications, 132, 110–125.CrossRef Duma, M., & Twala, B. (2019). Sparseness reduction in collaborative filtering using a nearest neighbor artificial immune system with genetic algorithms. Expert Systems with Applications, 132, 110–125.CrossRef
Zurück zum Zitat Duricic, T., Lacic, E., Kowald, D., & Lex, E. (2018). Trust-based collaborative filtering: Tackling the cold start problem using regular equivalence. In Proceedings of the 18th RecSys (pp. 446–450). Duricic, T., Lacic, E., Kowald, D., & Lex, E. (2018). Trust-based collaborative filtering: Tackling the cold start problem using regular equivalence. In Proceedings of the 18th RecSys (pp. 446–450).
Zurück zum Zitat Formoso, V., et al. (2013). Using profile expansion techniques to alleviate the new user problem. Information Processing and Management, 49, 659–672.CrossRef Formoso, V., et al. (2013). Using profile expansion techniques to alleviate the new user problem. Information Processing and Management, 49, 659–672.CrossRef
Zurück zum Zitat Gan, M. X., & Jiang, R. (2013). Constructing a user similarity network to remove adverse influence of popular objects for personalized recommendations. Expert Systems with Applications, 40, 4044–4053.CrossRef Gan, M. X., & Jiang, R. (2013). Constructing a user similarity network to remove adverse influence of popular objects for personalized recommendations. Expert Systems with Applications, 40, 4044–4053.CrossRef
Zurück zum Zitat Guo, G., Zhang, J., & Yorke-Smith, N. (2015). TrustSVD: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In Proceedings of the 29th AAAI conference on artificial intelligence (pp. 123–125). Guo, G., Zhang, J., & Yorke-Smith, N. (2015). TrustSVD: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In Proceedings of the 29th AAAI conference on artificial intelligence (pp. 123–125).
Zurück zum Zitat Guo, G., Zhang, J., & Thalmann, D. (2014). Merging trust in collaborative filtering to alleviate data sparsity and cold start. Knowledge-Based Systems, 57, 57–68.CrossRef Guo, G., Zhang, J., & Thalmann, D. (2014). Merging trust in collaborative filtering to alleviate data sparsity and cold start. Knowledge-Based Systems, 57, 57–68.CrossRef
Zurück zum Zitat Herlocker, J.L., Konstan, J.A., Borchers, A. & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual ACM symposium on research and development in information retrieval (pp. 230–237). Herlocker, J.L., Konstan, J.A., Borchers, A. & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual ACM symposium on research and development in information retrieval (pp. 230–237).
Zurück zum Zitat Herlocker, J. L., & Konstan, J. A. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5, 287–310.CrossRef Herlocker, J. L., & Konstan, J. A. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5, 287–310.CrossRef
Zurück zum Zitat Hwangbo, H., & Kim, Y. (2017). An empirical study on the effect of data sparsity and data overlap on cross domain collaborative filtering performance. Expert Systems with Applications, 89, 254–265.CrossRef Hwangbo, H., & Kim, Y. (2017). An empirical study on the effect of data sparsity and data overlap on cross domain collaborative filtering performance. Expert Systems with Applications, 89, 254–265.CrossRef
Zurück zum Zitat Javari, A., & Jalili, M. (2015). A probabilistic model to resolve diversity-accuracy challenge of recommendation systems. Knowledge and Information Systems, 44, 609–627.CrossRef Javari, A., & Jalili, M. (2015). A probabilistic model to resolve diversity-accuracy challenge of recommendation systems. Knowledge and Information Systems, 44, 609–627.CrossRef
Zurück zum Zitat Kluver, D., & Konstan, J. A. (2014). Evaluating recommender behavior for new users. In Proceedings of the 8th ACM conference on recommender systems (pp. 121–128). Kluver, D., & Konstan, J. A. (2014). Evaluating recommender behavior for new users. In Proceedings of the 8th ACM conference on recommender systems (pp. 121–128).
Zurück zum Zitat Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 8, 30–37.CrossRef Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 8, 30–37.CrossRef
Zurück zum Zitat Liu, J. G., Shi, K., & Guo, Q. (2012). Solving the accuracy-diversity dilemma via directed random walks. Physical Review E, 85(1), 016118.CrossRef Liu, J. G., Shi, K., & Guo, Q. (2012). Solving the accuracy-diversity dilemma via directed random walks. Physical Review E, 85(1), 016118.CrossRef
Zurück zum Zitat Li, K. K., Zhou, X. Z., Lin, F., Zeng, W. H., Wang, B. Z., & Alterovitz, G. (2019). Sparse online collaborative filtering with dynamic regularization. Information Sciences, 505, 535–548.CrossRef Li, K. K., Zhou, X. Z., Lin, F., Zeng, W. H., Wang, B. Z., & Alterovitz, G. (2019). Sparse online collaborative filtering with dynamic regularization. Information Sciences, 505, 535–548.CrossRef
Zurück zum Zitat Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12–32.CrossRef Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12–32.CrossRef
Zurück zum Zitat McNee, S.M., Riedl, J., & Konstan, J.A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. In Proceedings of the ACM CHI’06 extended abstracts on Human factors in computing systems (pp. 1097–1101). McNee, S.M., Riedl, J., & Konstan, J.A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. In Proceedings of the ACM CHI’06 extended abstracts on Human factors in computing systems (pp. 1097–1101).
Zurück zum Zitat Patra, B. K., Launonen, R., Ollikainen, V., & Nandi, S. (2015). A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Systems, 82, 163–177.CrossRef Patra, B. K., Launonen, R., Ollikainen, V., & Nandi, S. (2015). A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Systems, 82, 163–177.CrossRef
Zurück zum Zitat Protasiewicz, J., Pedrycz, W., et al. (2016). A recommender system of reviewers and experts in reviewing problems. Knowledge-Based Systems, 106, 164–178.CrossRef Protasiewicz, J., Pedrycz, W., et al. (2016). A recommender system of reviewers and experts in reviewing problems. Knowledge-Based Systems, 106, 164–178.CrossRef
Zurück zum Zitat Ramezani, M., Moradi, P., & Akhlaghian, F. (2014). A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains. Physica A: Statistical Mechanics and its Applications, 408, 72–84.CrossRef Ramezani, M., Moradi, P., & Akhlaghian, F. (2014). A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains. Physica A: Statistical Mechanics and its Applications, 408, 72–84.CrossRef
Zurück zum Zitat Shi, Y., Karatzoglou, A., Baltrunas, L., & Larson, M. (2012). TFMAP: Optimizing MAP for top-n context-aware recommendation. In Proceedings of the 35th ACM SIGIR conference on research and development in information retrieval (pp. 155–164). Shi, Y., Karatzoglou, A., Baltrunas, L., & Larson, M. (2012). TFMAP: Optimizing MAP for top-n context-aware recommendation. In Proceedings of the 35th ACM SIGIR conference on research and development in information retrieval (pp. 155–164).
Zurück zum Zitat Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104.CrossRef Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104.CrossRef
Zurück zum Zitat Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the 11th RecSys (pp. 23–27). Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the 11th RecSys (pp. 23–27).
Zurück zum Zitat Vlachos, M., Dunner, C., Heckel, R., Vassiliadis, V. G., Parnell, T., & Atasu, K. (2018). Addressing interpretability and cold-start in matrix factorization for recommender systems. IEEE Transactions on Knowledge and Data Engineering, 31, 1253–1266.CrossRef Vlachos, M., Dunner, C., Heckel, R., Vassiliadis, V. G., Parnell, T., & Atasu, K. (2018). Addressing interpretability and cold-start in matrix factorization for recommender systems. IEEE Transactions on Knowledge and Data Engineering, 31, 1253–1266.CrossRef
Zurück zum Zitat Yang, X. W., Liang, C., Zhao, M., Wang, H. W., Ding, H., Liu, Y., et al. (2017). Collaborative filtering-based recommendation of online social voting. IEEE Transactions on Computational Social Systems, 4, 1–13.CrossRef Yang, X. W., Liang, C., Zhao, M., Wang, H. W., Ding, H., Liu, Y., et al. (2017). Collaborative filtering-based recommendation of online social voting. IEEE Transactions on Computational Social Systems, 4, 1–13.CrossRef
Zurück zum Zitat Yang, Y. J., Xu, Y. B., Wang, E., Han, J. Y., & Yu, Z. W. (2018). Improving existing collaborative filtering recommendations via serendipity-based algorithm. IEEE Transactions on Multimedia, 20, 1888–1900.CrossRef Yang, Y. J., Xu, Y. B., Wang, E., Han, J. Y., & Yu, Z. W. (2018). Improving existing collaborative filtering recommendations via serendipity-based algorithm. IEEE Transactions on Multimedia, 20, 1888–1900.CrossRef
Zurück zum Zitat Zhang, Z. P., Kudo, Y., & Murai, T. (2017). Neighbor selection for user-based collaborative filtering using covering-based rough sets. Annals of Operations Research, 256, 359–374.MathSciNetCrossRef Zhang, Z. P., Kudo, Y., & Murai, T. (2017). Neighbor selection for user-based collaborative filtering using covering-based rough sets. Annals of Operations Research, 256, 359–374.MathSciNetCrossRef
Zurück zum Zitat Zhang, C. X., Yang, M., Lv, J., & Wang, W. Q. (2018). An improved hybrid collaborative filtering algorithm based on tags and time factor. Big Data Mining and Analytics, 1, 48–56. Zhang, C. X., Yang, M., Lv, J., & Wang, W. Q. (2018). An improved hybrid collaborative filtering algorithm based on tags and time factor. Big Data Mining and Analytics, 1, 48–56.
Zurück zum Zitat Zhou, Q. (2016). Supervised approach for detecting average over popular items attack in collaborative recommender systems. IET Information Security, 10, 134–141.CrossRef Zhou, Q. (2016). Supervised approach for detecting average over popular items attack in collaborative recommender systems. IET Information Security, 10, 134–141.CrossRef
Zurück zum Zitat Zhu, W. (2009). Relationship among basic concepts in covering-based rough sets. Information Sciences, 179, 2478–2486.MathSciNetCrossRef Zhu, W. (2009). Relationship among basic concepts in covering-based rough sets. Information Sciences, 179, 2478–2486.MathSciNetCrossRef
Zurück zum Zitat Zhu, W., & Wang, F. Y. (2003). Reduction and maximization of covering generalized rough sets. Information Sciences, 152, 217–230.MathSciNetCrossRef Zhu, W., & Wang, F. Y. (2003). Reduction and maximization of covering generalized rough sets. Information Sciences, 152, 217–230.MathSciNetCrossRef
Zurück zum Zitat Zhu, W., & Wang, F. Y. (2007). On three types of covering-based rough sets. IEEE Transactions on Knowledge and Data Engineering, 19, 1131–1144.CrossRef Zhu, W., & Wang, F. Y. (2007). On three types of covering-based rough sets. IEEE Transactions on Knowledge and Data Engineering, 19, 1131–1144.CrossRef
Metadaten
Titel
Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering
verfasst von
Zhipeng Zhang
Yao Zhang
Yonggong Ren
Publikationsdatum
19.06.2020
Verlag
Springer Netherlands
Erschienen in
Discover Computing / Ausgabe 4/2020
Print ISSN: 2948-2984
Elektronische ISSN: 2948-2992
DOI
https://doi.org/10.1007/s10791-020-09378-w

Premium Partner